Concept explainers
(a)
To match the function
(a)
Answer to Problem 1E
Explanation of Solution
Given:
The expressions,
Concept Used:
Reciprocal identities of trigonometric functions:
Calculation:
In order tofind the equivalent expression for the function
Observe that the csc is reciprocal of the sine function, so the equivalent expression for
Thus, the equivalent expression to
(b)
To match the function
(b)
Answer to Problem 1E
Explanation of Solution
Given:
The expressions,
Concept Used:
Reciprocal identities of trigonometric functions:
Calculation:
In order to find the equivalent expression for the function
Observe that the sec is reciprocal of the cosine function, so the equivalent expression for
Thus, the equivalent expression to
(c)
To match the function
(c)
Answer to Problem 1E
Explanation of Solution
Given:
The expressions,
Concept Used:
Reciprocal identities of trigonometric functions:
Calculation:
In order to find the equivalent expression for the function
Observe that the cotangent is reciprocal of the tangent function, so the equivalent expression for
Thus, the equivalent expression to
Chapter 5 Solutions
PRECALCULUS W/LIMITS:GRAPH.APPROACH(HS)
- Determine whether the lines L₁ (t) = (-2,3, −1)t + (0,2,-3) and L2 p(s) = (2, −3, 1)s + (-10, 17, -8) intersect. If they do, find the point of intersection.arrow_forwardConvert the line given by the parametric equations y(t) Enter the symmetric equations in alphabetic order. (x(t) = -4+6t = 3-t (z(t) = 5-7t to symmetric equations.arrow_forwardFind the point at which the line (t) = (4, -5,-4)+t(-2, -1,5) intersects the xy plane.arrow_forward
- Find the distance from the point (-9, -3, 0) to the line ä(t) = (−4, 1, −1)t + (0, 1, −3) .arrow_forward1 Find a vector parallel to the line defined by the parametric equations (x(t) = -2t y(t) == 1- 9t z(t) = -1-t Additionally, find a point on the line.arrow_forwardFind the (perpendicular) distance from the line given by the parametric equations (x(t) = 5+9t y(t) = 7t = 2-9t z(t) to the point (-1, 1, −3).arrow_forward
- Let ä(t) = (3,-2,-5)t + (7,−1, 2) and (u) = (5,0, 3)u + (−3,−9,3). Find the acute angle (in degrees) between the lines:arrow_forwardA tank initially contains 50 gal of pure water. Brine containing 3 lb of salt per gallon enters the tank at 2 gal/min, and the (perfectly mixed) solution leaves the tank at 3 gal/min. Thus, the tank is empty after exactly 50 min. (a) Find the amount of salt in the tank after t minutes. (b) What is the maximum amount of salt ever in the tank?arrow_forwardpleasd dont use chat gptarrow_forward
- Calculus: Early TranscendentalsCalculusISBN:9781285741550Author:James StewartPublisher:Cengage LearningThomas' Calculus (14th Edition)CalculusISBN:9780134438986Author:Joel R. Hass, Christopher E. Heil, Maurice D. WeirPublisher:PEARSONCalculus: Early Transcendentals (3rd Edition)CalculusISBN:9780134763644Author:William L. Briggs, Lyle Cochran, Bernard Gillett, Eric SchulzPublisher:PEARSON
- Calculus: Early TranscendentalsCalculusISBN:9781319050740Author:Jon Rogawski, Colin Adams, Robert FranzosaPublisher:W. H. FreemanCalculus: Early Transcendental FunctionsCalculusISBN:9781337552516Author:Ron Larson, Bruce H. EdwardsPublisher:Cengage Learning