In Figure P5.46, the pulleys and pulleys the cord are light, all surfaces are frictionless, and the cord does not stretch. (a) How does the acceleration of block 1 compare with the acceleration of block 2? Explain your reasoning. (b) The mass of block 2 is 1.30 kg. Find its acceleration as it depends on the mass m 1 of block 1. (c) What If? What does the result of part (b) predict if m 1 is very much less than 1.30 kg? (d) What docs the result of part (b) predict if m 2 approaches infinity? (e) In this last case, what is the tension in the cord? (f) Could you anticipate the answers to parts (c), (d), and (e) without first doing part (b)? Explain. Figure P5.46
In Figure P5.46, the pulleys and pulleys the cord are light, all surfaces are frictionless, and the cord does not stretch. (a) How does the acceleration of block 1 compare with the acceleration of block 2? Explain your reasoning. (b) The mass of block 2 is 1.30 kg. Find its acceleration as it depends on the mass m 1 of block 1. (c) What If? What does the result of part (b) predict if m 1 is very much less than 1.30 kg? (d) What docs the result of part (b) predict if m 2 approaches infinity? (e) In this last case, what is the tension in the cord? (f) Could you anticipate the answers to parts (c), (d), and (e) without first doing part (b)? Explain. Figure P5.46
Solution Summary: The author explains how the acceleration of block 1 can be compared with that of the same object.
In Figure P5.46, the pulleys and pulleys the cord are light, all surfaces are frictionless, and the cord does not stretch. (a) How does the acceleration of block 1 compare with the acceleration of block 2? Explain your reasoning. (b) The mass of block 2 is 1.30 kg. Find its acceleration as it depends on the mass m1 of block 1. (c) What If? What does the result of part (b) predict if m1 is very much less than 1.30 kg? (d) What docs the result of part (b) predict if m2 approaches infinity? (e) In this last case, what is the tension in the cord? (f) Could you anticipate the answers to parts (c), (d), and (e) without first doing part (b)? Explain.
1. A charge of -25 μC is distributed uniformly throughout a spherical volume of radius 11.5 cm.
Determine the electric field due to this charge at a distance of (a) 2 cm, (b) 4.6 cm, and (c) 25 cm from
the center of the sphere.
(a) =
=
(b) E =
(c)Ẻ =
=
NC NC NC
1.
A long silver rod of radius 3.5 cm has a charge of -3.9
ис
on its surface. Here ŕ is a unit vector
ст
directed perpendicularly away from the axis of the rod as shown in the figure.
(a) Find the electric field at a point 5 cm from the center of the rod (an outside point).
E =
N
C
(b) Find the electric field at a point 1.8 cm from the center of the rod (an inside point)
E=0
Think & Prepare
N
C
1. Is there a symmetry in the charge distribution? What kind of symmetry?
2. The problem gives the charge per unit length 1. How do you figure out the surface charge density σ
from a?
1. Determine the electric flux through each surface whose cross-section is shown below.
55
S₂
-29
S5
SA
S3
+ 9
Enter your answer in terms of q and ε
Φ
(a) s₁
(b) s₂
=
-29
(C) Φ
զ
Ερ
(d) SA
=
(e) $5
(f) Sa
$6
=
II
✓
-29
S6
+39
Chapter 5 Solutions
Physics for Scientists and Engineers with Modern, Revised Hybrid (with Enhanced WebAssign Printed Access Card for Physics, Multi-Term Courses)
Chemistry: An Introduction to General, Organic, and Biological Chemistry (13th Edition)
Knowledge Booster
Learn more about
Need a deep-dive on the concept behind this application? Look no further. Learn more about this topic, physics and related others by exploring similar questions and additional content below.