Physics for Scientists and Engineers with Modern, Revised Hybrid (with Enhanced WebAssign Printed Access Card for Physics, Multi-Term Courses)
9th Edition
ISBN: 9781305266292
Author: Raymond A. Serway, John W. Jewett
Publisher: Cengage Learning
expand_more
expand_more
format_list_bulleted
Concept explainers
Textbook Question
Chapter 5, Problem 10OQ
A large crate of mass m is place on the flatbed of a truck but not tied down. As the truck accelerates forward with acceleration a, the crate remains at rest relative to the truck. What force causes the crate to accelerate? (a) the normal force (b) the gravitational
Expert Solution & Answer
Want to see the full answer?
Check out a sample textbook solutionStudents have asked these similar questions
A plate of cafeteria food is on a horizontal table. You push it away from you with a constant horizontal force of 14.0 N. The plate has a mass of 0.800 kg, and during the push it has an acceleration of 12.0 m/s2 in the direction you are pushing it. (a) What is the magnitude of the net external force on the plate during the push? (b) What are the magnitude and direction of the friction force that the table exerts on the plate during the push?
A tractor is being used to pull two large logs across a field. A chain connects the logs to each other; the front log is connected to the tractor by a separate chain. The mass of the front log is 180 kg. The mass of the back log is 220 kg. The coefficient of friction between the logs and the field is approximately 0.45. The tension in the chain connecting the tractor to the front log is 1850 N. Determine the acceleration of the logs and the tension in the chain that connects the two logs.
You are at the grocery store pushing on a shopping cart. The mass of the cart including all the delicious food you will buy is 26.0 kg. The coefficient of friction between the floor and the wheels of the shopping cart is 0.30. In order to accelerate the cart to 2.40 m/s from rest in 2.50 m, what force must you apply to the cart?
Chapter 5 Solutions
Physics for Scientists and Engineers with Modern, Revised Hybrid (with Enhanced WebAssign Printed Access Card for Physics, Multi-Term Courses)
Ch. 5.2 - Which of the following statements is correct? (a)...Ch. 5.4 - An object experiences no acceleration. Which of...Ch. 5.4 - You push an object, initially at rest, across a...Ch. 5.5 - Suppose you are talking by interplanetary...Ch. 5.6 - (i) If a fly collides with the windshield of a...Ch. 5.8 - You press your physics textbook flat against a...Ch. 5.8 - Prob. 5.7QQCh. 5 - The driver of a speeding empty truck slams on the...Ch. 5 - In Figure OQ5.2, a locomotive has broken through...Ch. 5 - Prob. 3OQ
Ch. 5 - Prob. 4OQCh. 5 - Prob. 5OQCh. 5 - The manager of a department store is pushing...Ch. 5 - Two objects are connected by a string that passes...Ch. 5 - Prob. 8OQCh. 5 - A truck loaded with sand accelerates along a...Ch. 5 - A large crate of mass m is place on the flatbed of...Ch. 5 - If an object is in equilibrium, which of the...Ch. 5 - A crate remains stationary after it has been...Ch. 5 - An object of mass m moves with acceleration a down...Ch. 5 - Prob. 1CQCh. 5 - Your hands are wet, and the restroom towel...Ch. 5 - In the motion picture It Happened One Night...Ch. 5 - If a car is traveling due westward with a constant...Ch. 5 - A passenger sitting in the rear of a bus claims...Ch. 5 - A child tosses a ball straight up. She says that...Ch. 5 - A person holds a ball in her hand. (a) Identify...Ch. 5 - Prob. 8CQCh. 5 - Prob. 9CQCh. 5 - Twenty people participate in a tug-of-war. The two...Ch. 5 - Prob. 11CQCh. 5 - Prob. 12CQCh. 5 - A weightlifter stands on a bathroom scale. He...Ch. 5 - Prob. 14CQCh. 5 - Suppose you are driving a classic car. Why should...Ch. 5 - Prob. 16CQCh. 5 - Describe two examples in which the force of...Ch. 5 - The mayor of a city reprimands some city employees...Ch. 5 - Give reasons for the answers to each of the...Ch. 5 - Prob. 20CQCh. 5 - Identify actionreaction pairs in the following...Ch. 5 - Prob. 22CQCh. 5 - Prob. 23CQCh. 5 - A certain orthodontist uses a wire brace to align...Ch. 5 - If a man weighs 900 N on the Earth, what would he...Ch. 5 - A 3.00-kg object undergoes an acceleration given...Ch. 5 - Prob. 4PCh. 5 - Prob. 5PCh. 5 - The average speed of a nitrogen molecule in air is...Ch. 5 - Prob. 7PCh. 5 - Prob. 8PCh. 5 - Review. The gravitational force exerted on a...Ch. 5 - Review. The gravitational force exerted on a...Ch. 5 - Review. An electron of mass 9. 11 1031 kg has an...Ch. 5 - Prob. 12PCh. 5 - One or more external forces, large enough to be...Ch. 5 - A brick of mass M has been placed on a rubber...Ch. 5 - Two forces, F1=(6.00i4.00j)N and...Ch. 5 - Prob. 16PCh. 5 - Prob. 17PCh. 5 - Prob. 18PCh. 5 - Prob. 19PCh. 5 - You stand on the seat of a chair and then hop off....Ch. 5 - Prob. 21PCh. 5 - Review. Three forces acting on an object are given...Ch. 5 - Prob. 23PCh. 5 - Prob. 24PCh. 5 - Review. Figure P5.15 shows a worker poling a boata...Ch. 5 - An iron bolt of mass 65.0 g hangs from a string...Ch. 5 - Prob. 27PCh. 5 - The systems shown in Figure P5.28 are in...Ch. 5 - Prob. 29PCh. 5 - A block slides down a frictionless plane having an...Ch. 5 - The distance between two telephone poles is 50.0...Ch. 5 - A 3.00-kg object is moving in a plane, with its x...Ch. 5 - A bag of cement weighing 325 N hangs in...Ch. 5 - A bag of cement whose weight is Fg hangs in...Ch. 5 - Prob. 35PCh. 5 - Prob. 36PCh. 5 - An object of mass m = 1.00 kg is observed to have...Ch. 5 - Prob. 38PCh. 5 - Prob. 39PCh. 5 - An object of mass m1 = 5.00 kg placed on a...Ch. 5 - Prob. 41PCh. 5 - Two objects are connected by a light string that...Ch. 5 - Prob. 43PCh. 5 - Prob. 44PCh. 5 - In the system shown in Figure P5.23, a horizontal...Ch. 5 - An object of mass m1 hangs from a string that...Ch. 5 - A block is given an initial velocity of 5.00 m/s...Ch. 5 - A car is stuck in the mud. A tow truck pulls on...Ch. 5 - Prob. 49PCh. 5 - Prob. 50PCh. 5 - In Example 5.8, we investigated the apparent...Ch. 5 - Consider a large truck carrying a heavy load, such...Ch. 5 - Prob. 53PCh. 5 - Prob. 54PCh. 5 - A 25.0-kg block is initially at rest on a...Ch. 5 - Why is the following situation impassible? Your...Ch. 5 - Prob. 57PCh. 5 - Before 1960m people believed that the maximum...Ch. 5 - Prob. 59PCh. 5 - A woman at an airport is towing her 20.0-kg...Ch. 5 - Review. A 3.00-kg block starts from rest at the...Ch. 5 - The person in Figure P5.30 weighs 170 lb. As seen...Ch. 5 - A 9.00-kg hanging object is connected by a light,...Ch. 5 - Three objects are connected on a table as shown in...Ch. 5 - Prob. 65PCh. 5 - A block of mass 3.00 kg is pushed up against a...Ch. 5 - Prob. 67PCh. 5 - Prob. 68PCh. 5 - Prob. 69PCh. 5 - A 5.00-kg block is placed on top of a 10.0-kg...Ch. 5 - Prob. 71PCh. 5 - A black aluminum glider floats on a film of air...Ch. 5 - Prob. 73APCh. 5 - Why is the following situation impossible? A book...Ch. 5 - Prob. 75APCh. 5 - A 1.00-kg glider on a horizontal air track is...Ch. 5 - Prob. 77APCh. 5 - Prob. 78APCh. 5 - Two blocks of masses m1 and m2, are placed on a...Ch. 5 - Prob. 80APCh. 5 - An inventive child named Nick wants to reach an...Ch. 5 - Prob. 82APCh. 5 - Prob. 83APCh. 5 - An aluminum block of mass m1 = 2.00 kg and a...Ch. 5 - Prob. 85APCh. 5 - Prob. 86APCh. 5 - Prob. 87APCh. 5 - Prob. 88APCh. 5 - A crate of weight Fg is pushed by a force P on a...Ch. 5 - Prob. 90APCh. 5 - A flat cushion of mass m is released from rest at...Ch. 5 - In Figure P5.46, the pulleys and pulleys the cord...Ch. 5 - What horizontal force must be applied to a large...Ch. 5 - Prob. 94APCh. 5 - A car accelerates down a hill (Fig. P5.95), going...Ch. 5 - Prob. 96CPCh. 5 - Prob. 97CPCh. 5 - Initially, the system of objects shown in Figure...Ch. 5 - A block of mass 2.20 kg is accelerated across a...Ch. 5 - Prob. 100CPCh. 5 - Prob. 101CPCh. 5 - In Figure P5.55, the incline has mass M and is...Ch. 5 - Prob. 103CPCh. 5 - Prob. 104CP
Knowledge Booster
Learn more about
Need a deep-dive on the concept behind this application? Look no further. Learn more about this topic, physics and related others by exploring similar questions and additional content below.Similar questions
- In a laboratory experiment, an initially stationary electron (mass = 9.11 x 10–31 kg) undergoes a constant acceleration through 2.4 cm, reaching a speed of 5.7 x 106 m/s at the end of that distance. What are (a) the magnitude of the force accelerating the electron and (b) the electron's weight?arrow_forwardA wedge with mass M rests on a frictionless m horizontal tabletop. A block with mass m is placed on the wedge and a horizontal F force F is applied to the wedge. There M is no friction between the block and the wedge. For a = "/7, what must the magnitude of F be if the block is to remain at a constant height above the tabletop? (g is the magnitude of the gravitational acceleration. Take m = 1 kg, M = 5 kg and g = 10 m/s².) %3D (a) 29 N (b) 35 N (c) 44 N (d) 60 N (e) 104 Narrow_forwardA 32.3-kg crate rests on a horizontal floor, and a 68.8-kg person is standing on the crate. Determine the magnitude of the normal force that (a) the floor exerts on the crate and (b) the crate exerts on the person.arrow_forward
- A car of mass 1.15 * 103 kg is stalled on a horizontal road. You and your friends give the car a constant, forward, horizontal push. There is friction between the car and the road. (a) Name the four external forces that act on the car as you and your friends push it and what exerts each force. (You can regard the combined push from you and your friends as a single force.) (b) The combined force that you and your friends exert has magnitude 8.00 * 102 N, and starting from rest the car reaches a speed of 1.40 m/s after you have pushed it 5.00 m. Find the magnitude of the constant friction force that acts on the car.arrow_forwardAs a fish jumps vertically out of the water, assume that only two significant forces act on it: an upward force F exerted by the tail fin and the downward force due to gravity. A record Chinook salmon has a length of 1.50 m and a mass of 45.0 kg. If this fish is moving upward at 3.00 m/s as its head first breaks the surface and has an upward speed of 5.40 m/s after two-thirds of its length has left the surface, assume constant acceleration and determine the following. (a) the salmon's acceleration m/s² upward (b) the magnitude of the force F during this intervalarrow_forwardTwo boxes, A and B, are connected by an ideal (massless) cord and are resting on a smooth (frictionless) table. The boxes have masses of 12.0 kg and 10.0 kg. A horizontal force R of 40.0 N pulls on the 10-kg box. (a) Find the acceleration of each box. (b) Find the tension force in the cord connecting the two boxes.arrow_forward
- A block M1 of mass 10.0 kg sits on top of a larger block M2 of mass 20.0 kg which sits on a flat surface. The kinetic friction coefficient between the upper and lower block is 0.440. The kinetic friction coefficient between the lower block and the flat surface is 0.140. A horizontal force F= 97 N pushes against the upper block, causing it to slide. The friction force between the blocks then causes the lower block to slide also. What is the magnitude of the acceleration of the upper block? What is the magnitude of the acceleration of the lower block?arrow_forwardAs a fish jumps vertically out of the water, assume that only two significant forces act on it: an upward force F exerted by the tail fin and the downward force due to gravity. A record Chinook salmon has a length of 1.50 m and a mass of 61.0 kg. If this fish is moving upward at 3.00 m/s as its head first breaks the surface and has an upward speed of 6.00 m/s after two-thirds of its length has left the surface, assume constant acceleration and determine (a) the salmon’s acceleration and (b) the magnitude of the force F during this interval.arrow_forwardA 39 kg girl and a 7.7 kg sled are on the frictionless ice of a frozen lake, 10 m apart but connected by a rope of negligible mass. The girl exerts a horizontal 5.2 N force on the rope. What are the acceleration magnitudes of (a) the sled and (b) the girl? (c) How far from the girl's initial position do they meet? (a) Number Units (b) Number i Units (c) Number i Units 尾arrow_forward
- *64. GO A block is pressed against a vertical wall by a force P, as the drawing shows. This force can either push the block upward at a constant ve- locity or allow it to slide downward at a constant velocity. The magnitude of the force is different in the two cases, while the directional angle 0 is the same. Kinetic friction exists between the block and the wall, and the coefficient of kinetic friction is 0.250. The weight of the block is 39.0 N, and the directional angle for the force P is 0 = 30.0°. Determine the magnitude of P when the block slides (a) up the wall and (b) down the wall.arrow_forwardA 3 kg and a 5 kg box rest side-by-side on a smooth, level floor. A horizontal force of 32 N is applied to the 3 kg box pushing it against the 5 kg box, and, as a result, both boxes slide along the floor. What is the magnitude of the contact force between the two boxes? Assume no friction.arrow_forwardA crate remains stationary after it has been placed on a ramp inclined at an angle with the horizontal. Which of the following statements is or are correct about the magnitude of the friction force that acts on the crate? Choose all that are true, (a) It is larger than the weight of the crate, (b) It is equal to µ, n. (c) It is greater than the component of the gravitational force acting down the ramp. (d) It is equal to the component of the gravitational force acting down the ramp. (e) It is less than the component of the gravitational force acting down the ramp.arrow_forward
arrow_back_ios
SEE MORE QUESTIONS
arrow_forward_ios
Recommended textbooks for you
- College PhysicsPhysicsISBN:9781305952300Author:Raymond A. Serway, Chris VuillePublisher:Cengage LearningUniversity Physics (14th Edition)PhysicsISBN:9780133969290Author:Hugh D. Young, Roger A. FreedmanPublisher:PEARSONIntroduction To Quantum MechanicsPhysicsISBN:9781107189638Author:Griffiths, David J., Schroeter, Darrell F.Publisher:Cambridge University Press
- Physics for Scientists and EngineersPhysicsISBN:9781337553278Author:Raymond A. Serway, John W. JewettPublisher:Cengage LearningLecture- Tutorials for Introductory AstronomyPhysicsISBN:9780321820464Author:Edward E. Prather, Tim P. Slater, Jeff P. Adams, Gina BrissendenPublisher:Addison-WesleyCollege Physics: A Strategic Approach (4th Editio...PhysicsISBN:9780134609034Author:Randall D. Knight (Professor Emeritus), Brian Jones, Stuart FieldPublisher:PEARSON
College Physics
Physics
ISBN:9781305952300
Author:Raymond A. Serway, Chris Vuille
Publisher:Cengage Learning
University Physics (14th Edition)
Physics
ISBN:9780133969290
Author:Hugh D. Young, Roger A. Freedman
Publisher:PEARSON
Introduction To Quantum Mechanics
Physics
ISBN:9781107189638
Author:Griffiths, David J., Schroeter, Darrell F.
Publisher:Cambridge University Press
Physics for Scientists and Engineers
Physics
ISBN:9781337553278
Author:Raymond A. Serway, John W. Jewett
Publisher:Cengage Learning
Lecture- Tutorials for Introductory Astronomy
Physics
ISBN:9780321820464
Author:Edward E. Prather, Tim P. Slater, Jeff P. Adams, Gina Brissenden
Publisher:Addison-Wesley
College Physics: A Strategic Approach (4th Editio...
Physics
ISBN:9780134609034
Author:Randall D. Knight (Professor Emeritus), Brian Jones, Stuart Field
Publisher:PEARSON
Electric Fields: Crash Course Physics #26; Author: CrashCourse;https://www.youtube.com/watch?v=mdulzEfQXDE;License: Standard YouTube License, CC-BY