Concept explainers
The range of the values of the mass m2 so that the two connected blocks resting on two inclined planes are in equilibrium.

Answer to Problem 83QAP
The mass m2 can have values between 3.51 kg and 52.64 kg for the system of masses to be in equilibrium.
Explanation of Solution
Given info:
Formula used:
From the diagram given, if the value of m2 falls below a certain value, it would slide up the plane and the block of mass m1 would slide down. This gives the value of the minimum mass of m2.
If the value of m2 increases beyond a certain value, the block would slide down the plane and the block of mass m1 would slide up.
By drawing the free body diagrams for each case, and applying the force equations for each case, the range of the values of m2 can be determined.
Explanation and Calculation:
Case 1:
Consider the case when the block 1slides down the plane and the block 2 slides up the plane.
The free body diagram for m1 is shown below:
The block rests on an incline which makes an angle
The weight
Resolve the weight w1 into components along the +x and −y directions as shown. The magnitudes of the components are given by,
Write the force equation along the +y direction.
Since the block is in equilibrium,
Therefore,
The force of friction is given by,
The system is in equilibrium along the x direction too. Therefore,
Using equations (1) and (2), in the above equation,
In a similar manner, construct a free body diagram for the block 2.
The block rests on an incline which makes an angle
The weight
Resolve the weight w2 into components along the −x and −y directions as shown. The magnitudes of the components are given by,
Write the force equation along the +y direction and apply the condition for equilibrium.
Therefore,
The force of friction is given by,
The system is in equilibrium along the x direction too. Therefore,
Using equations (4) and (6), in the above equation,
Add equations (3) and (7) and write an expression for m2.
Substitute the known values of the variables in the expression and calculate the value of m2.
The minimum value of m2 for which the system is in equilibrium is 3.51 kg.
Case 2:
Consider the case when the block 1slides up the plane and the block 2 slides down the plane.
The free body diagram for m1 is shown below:
Assume the +x direction up the incline and the +y direction perpendicular to the plane. The weight
The equations (1) and (2) are applied to this free body diagram too.
Write the condition for equilibrium along the x direction.
Use equations (1) and (2) in the expression.
In a similar manner, construct a free body diagram for the block 2.
. Assume a coordinate system which has the +x direction pointing down the plane and the +y direction perpendicular to the plane away from it. The weight
The equations (4), (5) and (6) are valid for this case too.
Write the equation for equilibrium along the x direction.
Using equations (4) and (6) in the expression,
Add equations (8) and (9) and write an expression for m2.
Substitute the known values of the variables in the expression.
The maximum value of m2 for the system to be in equilibrium is 52.64 kg.
Conclusion:
Thus, the mass m2 can have values between 3.51 kg and 52.64 kg for the system of masses to be in equilibrium.
Want to see more full solutions like this?
Chapter 5 Solutions
COLLEGE PHYSICS-ACHIEVE AC (1-TERM)
- A hollow, conducting sphere with an outer radius of 0.260 m and an inner radius of 0.200 m has a uniform surface charge density of +6.67 × 10−6 C/m2. A charge of -0.800 μC is now introduced into the cavity inside the sphere. What is the new charge density on the outside of the sphere? Calculate the strength of the electric field just outside the sphere. What is the electric flux through a spherical surface just inside the inner surface of the sphere?arrow_forwardA point charge of -3.00 μC is located in the center of a spherical cavity of radius 6.60 cm inside an insulating spherical charged solid. The charge density in the solid is 7.35 × 10−4 C/m3. Calculate the magnitude of the electric field inside the solid at a distance of 9.10 cm from the center of the cavity. Find the direction of this electric field.arrow_forwardAn infinitely long conducting cylindrical rod with a positive charge λ per unit length is surrounded by a conducting cylindrical shell (which is also infinitely long) with a charge per unit length of −2λ and radius r1, as shown in the figure. What is E(r), the radial component of the electric field between the rod and cylindrical shell as a function of the distance r from the axis of the cylindrical rod? Express your answer in terms of λ, r, and ϵ0, the permittivity of free space. What is σinner, the surface charge density (charge per unit area) on the inner surface of the conducting shell? What is σouterσouter, the surface charge density on the outside of the conducting shell? (Recall from the problem statement that the conducting shell has a total charge per unit length given by −2λ.) What is the radial component of the electric field, E(r), outside the shell?arrow_forward
- A very long conducting tube (hollow cylinder) has inner radius aa and outer radius b. It carries charge per unit length +α, where αα is a positive constant with units of C/m. A line of charge lies along the axis of the tube. The line of charge has charge per unit length +α. Calculate the electric field in terms of α and the distance r from the axis of the tube for r<a. Calculate the electric field in terms of α and the distance rr from the axis of the tube for a<r<b. Calculate the electric field in terms of αα and the distance r from the axis of the tube for r>b. What is the charge per unit length on the inner surface of the tube? What is the charge per unit length on the outer surface of the tube?arrow_forwardTwo small insulating spheres with radius 9.00×10−2 m are separated by a large center-to-center distance of 0.545 m . One sphere is negatively charged, with net charge -1.75 μC , and the other sphere is positively charged, with net charge 3.70 μC . The charge is uniformly distributed within the volume of each sphere. What is the magnitude E of the electric field midway between the spheres? Take the permittivity of free space to be ϵ0 = 8.85×10−12 C2/(N⋅m2) . What is the direction of the electric field midway between the spheres?arrow_forwardA conducting spherical shell with inner radius aa and outer radius bb has a positive point charge Q located at its center. The total charge on the shell is -3Q, and it is insulated from its surroundings. Derive the expression for the electric field magnitude in terms of the distance r from the center for the region r<a. Express your answer in terms of some or all of the variables Q, a, b, and appropriate constants. Derive the expression for the electric field magnitude in terms of the distance rr from the center for the region a<r<b. Derive the expression for the electric field magnitude in terms of the distance rr from the center for the region r>b. What is the surface charge density on the inner surface of the conducting shell? What is the surface charge density on the outer surface of the conducting shell?arrow_forward
- A small sphere with a mass of 3.00×10−3 g and carrying a charge of 4.80×10−8 C hangs from a thread near a very large, charged insulating sheet, as shown in the figure (Figure 1). The charge density on the sheet is −2.20×10−9 C/m2 . Find the angle of the thread.arrow_forwardA small conducting spherical shell with inner radius aa and outer radius bb is concentric with a larger conducting spherical shell with inner radius c and outer radius d (Figure 1). The inner shell has total charge +2q, and the outer shell has charge −2q. Calculate the magnitude of the electric field in terms of q and the distance rr from the common center of the two shells for r<a. Calculate the magnitude of the electric field for a<r<b. Calculate the magnitude of the electric field for b<r<c.arrow_forwardA cube has sides of length L = 0.800 m . It is placed with one corner at the origin as shown in the figure. The electric field is not uniform but is given by E→=αxi^+βzk^, where α=−3.90 and β= 7.10. What is the sum of the flux through the surface S5 and S6? What is the sum of the flux through the surface S2 and S4? Find the total electric charge inside the cube.arrow_forward
- In the figure, a proton is projected horizontally midway between two parallel plates that are separated by 0.6 cm. The electrical field due to the plates has magnitude 450000 N/C between the plates away from the edges. If the plates are 3 cm long, find the minimum speed of the proton if it just misses the lower plate as it emerges from the field.arrow_forwardA point charge of magnitude q is at the center of a cube with sides of length L. What is the electric flux Φ through each of the six faces of the cube? What would be the flux Φ1 through a face of the cube if its sides were of length L1? Please explain everything.arrow_forwardIf a 1/2 inch diameter drill bit spins at 3000 rotations per minute, how fast is the outer edge moving as it contacts a piece of metal while drilling a machine part?arrow_forward
- Classical Dynamics of Particles and SystemsPhysicsISBN:9780534408961Author:Stephen T. Thornton, Jerry B. MarionPublisher:Cengage LearningPrinciples of Physics: A Calculus-Based TextPhysicsISBN:9781133104261Author:Raymond A. Serway, John W. JewettPublisher:Cengage LearningPhysics for Scientists and Engineers, Technology ...PhysicsISBN:9781305116399Author:Raymond A. Serway, John W. JewettPublisher:Cengage Learning
- Physics for Scientists and Engineers: Foundations...PhysicsISBN:9781133939146Author:Katz, Debora M.Publisher:Cengage LearningCollege PhysicsPhysicsISBN:9781305952300Author:Raymond A. Serway, Chris VuillePublisher:Cengage LearningGlencoe Physics: Principles and Problems, Student...PhysicsISBN:9780078807213Author:Paul W. ZitzewitzPublisher:Glencoe/McGraw-Hill





