For the given data of container A and B , how the pressure in both containers is related to each other should be determined. Concept introduction: By combining the three gaseous laws namely Boyle’s law, Charles’s law and Avogadro’s law a combined gaseous equation is obtained. This combined gaseous equation is called Ideal gas law . According to ideal gas law, PV=nRT Where, P = pressure in atmospheres V= volumes in liters n = number of moles R =universal gas constant ( 0 .08206L×atm/K×mol ) T = temperature in kelvins By knowing any three of these properties, the state of a gas can be simply identified with applying the ideal gas equation. For a gas at two conditions, the unknown variable can be determined by knowing the variables that change and remain constant and can be generated an equation for unknown variable from ideal gas equation.
For the given data of container A and B , how the pressure in both containers is related to each other should be determined. Concept introduction: By combining the three gaseous laws namely Boyle’s law, Charles’s law and Avogadro’s law a combined gaseous equation is obtained. This combined gaseous equation is called Ideal gas law . According to ideal gas law, PV=nRT Where, P = pressure in atmospheres V= volumes in liters n = number of moles R =universal gas constant ( 0 .08206L×atm/K×mol ) T = temperature in kelvins By knowing any three of these properties, the state of a gas can be simply identified with applying the ideal gas equation. For a gas at two conditions, the unknown variable can be determined by knowing the variables that change and remain constant and can be generated an equation for unknown variable from ideal gas equation.
Solution Summary: The author explains how the pressure in both containers is related to each other. By combining the three gaseous laws, the state of a gas can be identified by applying the ideal gas equation.
Definition Definition Number of atoms/molecules present in one mole of any substance. Avogadro's number is a constant. Its value is 6.02214076 × 10 23 per mole.
Chapter 5, Problem 63E
Interpretation Introduction
Interpretation: For the given data of container A and B, how the pressure in both containers is related to each other should be determined.
Concept introduction:
By combining the three gaseous laws namely Boyle’s law, Charles’s law and Avogadro’s law a combined gaseous equation is obtained. This combined gaseous equation is called Ideal gas law.
According to ideal gas law,
PV=nRT
Where,
P = pressure in atmospheres
V= volumes in liters
n = number of moles
R =universal gas constant (
0.08206L×atm/K×mol)
T = temperature in kelvins
By knowing any three of these properties, the state of a gas can be simply identified with applying the ideal gas equation. For a gas at two conditions, the unknown variable can be determined by knowing the variables that change and remain constant and can be generated an equation for unknown variable from ideal gas equation.
Part II. two unbranched ketone have molecular formulla (C8H100). El-ms showed that
both of them
have a molecular ion peak at m/2 =128. However ketone
(A) has a fragment peak at m/2 = 99 and 72
while ketone (B) snowed a
fragment peak at m/2 = 113 and 58.
9) Propose the most plausible structures for both ketones
b) Explain how you arrived at your conclusion by drawing the
Structures of the distinguishing fragments for each ketone,
including their fragmentation mechanisms.
Part V. Draw the structure of compound tecla using the IR spectrum Cobtained from
the compound in KBr pellet) and the mass spectrum as shown below.
The mass spectrum of compound Tesla showed strong mt peak at 71.
TRANSMITTANCE
LOD
Relative Intensity
100
MS-NW-1539
40
20
80
T
44
55
10
15
20
25
30
35
40
45
50
55
60
65
70
75
m/z
D
4000
3000
2000
1500
1000
500
HAVENUMBERI-11
Need a deep-dive on the concept behind this application? Look no further. Learn more about this topic, chemistry and related others by exploring similar questions and additional content below.