Concept explainers
The sun’s mass is 1.99 × 1030 kg, the Earth’s mass is 5.98 × 1024 kg, and the moon’s mass is 7.36 × 1022 kg. The average distance between the moon and the Earth is 3.82 × 108 m, and the average distance between the Earth and the sun is 1.50 × 1011 m.
- a. Using Newton’s law of gravitation, find the average force exerted on the Earth by the sun.
- b. Find the average force exerted on the Earth by the moon.
- c. What is the ratio of the force exerted on the Earth by the sun to that exerted by the moon? Will the moon have much of an impact on the Earth’s orbit about the sun?
- d. Using the distance between the Earth and the sun as the average distance between the moon and the sun, find the average force exerted on the moon by the sun. Will the sun have much impact on the orbit of the moon about the Earth?
(a)
The average force exerted on the Earth by the sun.
Answer to Problem 5SP
The average force exerted on the Earth by the sun is
Explanation of Solution
Given Info: The mass of sun is
Write the mathematical expression for Newton’s law of universal gravitation.
Here,
The value of
Substitute
Conclusion:
Thus the average force exerted on the Earth by the sun is
(b)
The average force exerted on the Earth by the moon.
Answer to Problem 5SP
The average force exerted on the Earth by the moon is
Explanation of Solution
Given Info: The mass of Earth is
Substitute
Conclusion:
Thus the average force exerted on the Earth by the moon is
(c)
The ratio of the force exerted on the Earth by the sun to that exerted by the moon and whether the moon will have much of an impact on the Earth’s orbit about the sun.
Answer to Problem 5SP
The ratio of the force exerted on the Earth by the sun to that exerted by the moon is
Explanation of Solution
Find the ratio of the force exerted on the Earth by the sun to that exerted by the moon.
The value of the force exerted on the Earth by the sun is much greater than the force exerted on Earth by the moon. Therefore the moon will not have much of an impact on the orbit of Earth around sun.
Conclusion:
Thus, the ratio of the force exerted on the Earth by the sun to that exerted by the moon is
(d)
The average force exerted on the moon by the sun and whether the sun will have much impact on the orbit of the moon about the Earth.
Answer to Problem 5SP
The average force exerted on the moon by the sun is
Explanation of Solution
Given Info: The mass of sun is
Substitute
The Earth and sun exert strong forces on moon. This is because even though the Earth is much closer to the moon than the sun is, the sun has much larger mass than the Earth. The force of the sun on the moon distorts the elliptical orbit of the moon around Earth causing it to oscillate about a true elliptical path.
Conclusion:
Thus, the average force exerted on the moon by the sun is
Even though the Earth is much closer to the moon than the sun
Want to see more full solutions like this?
Chapter 5 Solutions
Physics of Everyday Phenomena
- No chatgpt pls will upvotearrow_forwardthe cable may break and cause severe injury. cable is more likely to break as compared to the [1] ds, inclined at angles of 30° and 50° to the vertical rings by way of a scaled diagram. [4] I 30° T₁ 3cm 3.8T2 cm 200 N 50° at it is headed due North and its airspeed indicat 240 km/h. If there is a wind of 100 km/h from We e relative to the Earth? [3]arrow_forwardCan you explain this using nodal analysis With the nodes I have present And then show me how many KCL equations I need to write, I’m thinking 2 since we have 2 dependent sourcesarrow_forward
- The shear leg derrick is used to haul the 200-kg net of fish onto the dock as shown in. Assume the force in each leg acts along its axis. 5.6 m. 4 m- B Part A Determine the compressive force along leg AB. Express your answer to three significant figures and include the appropriate units. FAB = Value Submit Request Answer Part B Units ? Determine the compressive force along leg CB. Express your answer to three significant figures and include the appropriate units. FCB= Value Submit Request Answer Part C ? Units Determine the tension in the winch cable DB. Express your answer with the appropriate units. 2marrow_forwardPart A (Figure 1) shows a bucket suspended from a cable by means of a small pulley at C. If the bucket and its contents have a mass of 10 kg, determine the location of the pulley for equilibrium. The cable is 6 m long. Express your answer to three significant figures and include the appropriate units. Figure 4 m B НА x = Value Submit Request Answer Provide Feedback < 1 of 1 T 1 m Units ?arrow_forwardThe particle in is in equilibrium and F4 = 165 lb. Part A Determine the magnitude of F1. Express your answer in pounds to three significant figures. ΑΣΦ tvec F₁ = Submit Request Answer Part B Determine the magnitude of F2. Express your answer in pounds to three significant figures. ΑΣΦ It vec F2 = Submit Request Answer Part C Determine the magnitude of F3. Express your answer in pounds to three significant figures. ? ? lb lb F₂ 225 lb 135° 45° 30° -60°-arrow_forward
- The 10-lb weight is supported by the cord AC and roller and by the spring that has a stiffness of k = 10 lb/in. and an unstretched length of 12 in. as shown in. Part A Determine the distance d to maintain equilibrium. Express your answer in inches to three significant figures. 節 ΕΠΙ ΑΣΦ d = *k J vec 5 t 0 ? d C A in. 12 in. Barrow_forwardThe members of a truss are connected to the gusset plate as shown in . The forces are concurrent at point O. Take = 90° and T₁ = 7.5 kN. Part A Determine the magnitude of F for equilibrium. Express your answer to three significant figures and include the appropriate units. F = Value Submit Request Answer Part B 0 ? Units Determine the magnitude of T2 for equilibrium. Express your answer to three significant figures and include the appropriate units. ? T₂ = Value Units T₁ Carrow_forwardpls help on botharrow_forward
- Principles of Physics: A Calculus-Based TextPhysicsISBN:9781133104261Author:Raymond A. Serway, John W. JewettPublisher:Cengage LearningPhysics for Scientists and Engineers: Foundations...PhysicsISBN:9781133939146Author:Katz, Debora M.Publisher:Cengage LearningAn Introduction to Physical SciencePhysicsISBN:9781305079137Author:James Shipman, Jerry D. Wilson, Charles A. Higgins, Omar TorresPublisher:Cengage Learning
- College PhysicsPhysicsISBN:9781305952300Author:Raymond A. Serway, Chris VuillePublisher:Cengage LearningPhysics for Scientists and EngineersPhysicsISBN:9781337553278Author:Raymond A. Serway, John W. JewettPublisher:Cengage LearningPhysics for Scientists and Engineers with Modern ...PhysicsISBN:9781337553292Author:Raymond A. Serway, John W. JewettPublisher:Cengage Learning