ATKINS' PHYSICAL CHEMISTRY
ATKINS' PHYSICAL CHEMISTRY
11th Edition
ISBN: 9780190053956
Author: ATKINS
Publisher: Oxford University Press
Question
Book Icon
Chapter 5, Problem 5F.6BE

(i)

Interpretation Introduction

Interpretation: The mass of KNO3 to be added to a 0.110molkg-1 solution of KNO3(aq) to increase its ionic strength to 1.00  has to be calculated.

Concept introduction: The ionic strength is introduced in the Debye-Huckel limiting law which relates the activity coefficient as a function of the ionic strength of the solution.  It is dependent on the concentration of all the ions present in the solution.  It is a dimensionless quantity.

(i)

Expert Solution
Check Mark

Answer to Problem 5F.6BE

The mass of KNO3 to be added to a 0.110molkg-1 solution of KNO3(aq) to increase its ionic strength to 1.0 is 44.94g_.

Explanation of Solution

The ionic strength (I) of a solution is given by the equation,

    I=12izi2(bi/b°)                                                                                        (1)

Where

  • zi is the charge present on the ion.
  • bi is the molality of the ion in the solution.

The molality of KNO3(aq) is 0.110molkg-1.

The reaction for the dissociation of KNO3(aq) is shown as,

  KNO3K++NO3

Hence,

The molality of cation, K+ (bK+) is 0.110molkg-1.

The molality of anion, NO3 (bNO3) is 0.110molkg-1.

The charge present on cation, K+ (zK+) is +1.

The charge present on anion, NO3 (zNO3) is 1.

Let the molality of KNO3 to be added be b.

The reaction for the dissociation of KNO3(aq) is shown as,

  KNO3K++NO3

Hence,

The molality of cation, K+ (bK+) is bmolkg-1.

The molality of anion, NO3 (bNO3) is bmolkg-1.

The charge present on cation, K+ (zK+) is +2.

The charge present on anion, NO3 (zNO3) is 1.

The ionic strength of the solution (I) has to be 1.0.

Substitute the values of bK+, bNO3, zK+, in equation (1)

INaCl=12[(bK+×zK+2)+(bNO3-×zNO3-2)+(bK+×zK+2)+(bNO3-×zNO3-2)]1.0=12[(0.110molkg-1×(1)2)+(0.110molkg-1×(1)2)+(bmolkg-1×(1)2)+(bmolkg-1×(1)2)]2.0=[0.220+2b]b=0.89molkg-1

Thus, the molality of KNO3 is 0.89molkg-1.

The molality of a solution is given by the formula,

    Molality=MolesofKNO3Massofsolvent (2)

The mass of the solvent is 500g.

The conversion of g to kg is done as,

    1000g=1kg

Therefore the conversion of 500g to kg is done as,

    500g=0.500kg

Substitute the molality of KNO3 and mass of the solvent in equation (2).

    0.89molkg1=MolesofKNO30.5kgMolesofKNO3=0.445mol

The number of moles of KNO3 is given by the formula,

     MolesofKNO3=MassofKNO3MolarmassofKNO3                                                   (3)

The molar mass of KNO3 is 101gmol-1.

Substitute the number of moles of KNO3 and molar mass of KNO3 in equation (3).

    0.445mol=MassofKNO3101gmolMassofKNO3=44.94g_

Thus the mass of KNO3 to be added to a 0.110molkg-1 solution of KNO3(aq) to increase its ionic strength to 0.250 is 44.94g_.

(ii)

Interpretation Introduction

Interpretation: The mass of Ba(NO3)2 to be added to a 0.110molkg-1 solution of KNO3(aq) to increase its ionic strength to 1.0 has to be calculated..

Concept introduction: The ionic strength is introduced in the Debye-Huckel limiting law which relates the activity coefficient as a function of the ionic strength of the solution.  It is dependent on the concentration of all the ions present in the solution.  It is a dimensionless quantity.

(ii)

Expert Solution
Check Mark

Answer to Problem 5F.6BE

The mass of Ba(NO3)2 to be added to a 0.110molkg-1 solution of KNO3(aq) to increase its ionic strength to 1.0 is 38.67g_.

Explanation of Solution

The ionic strength (I) of a solution is given by the equation,

    I=12izi2(bi/b°)                                                                                        (1)

Where

  • zi is the charge present on the ion.
  • bi is the molality of the ion in the solution.

The molality of KNO3(aq) is 0.110molkg-1.

The reaction for the dissociation of KNO3(aq) is shown as,

  KNO3K++NO3

Hence,

The molality of cation, K+ (bK+) is 0.110molkg-1.

The molality of anion, NO3 (bNO3) is 0.110molkg-1.

The charge present on cation, K+ (zK+) is +1.

The charge present on anion, NO3 (zNO3) is 1.

Let the molality of Ba(NO3)2 to be added be b.

The reaction for the dissociation of Ba(NO3)2 is shown as,

  Ba(NO3)2Ba2++2NO3

Hence,

The molality of cation, Ba2+ (bBa2+) is bmolkg-1.

The molality of anion, NO3 (bNO3) is 2×bmolkg-1.

The charge present on cation, Ba2+ (zBa2+) is +2.

The charge present on anion, NO3 (zNO3) is 1.

The ionic strength of the solution (I) has to be 0.250.

Substitute the values of bK+, bNO3, zK+, zNO3, bBa2+, bNO3, zNO3 and zBa2+, zCl in equation (1)

    INaCl=12[(bK+×zK+2)+(bNO3-×zNO3-2)+(bBa2+×zBa2+2)+(bNO3-×zNO3-2)]1=12[(0.110molkg-1×(1)2)+(0.110molkg-1×(1)2)+(bmolkg-1×(2)2)+(2×bmolkg-1×(1)2)]2=[0.220+6b]b=0.2967molkg-1

Thus, the molality of Ba(NO3)2 is 0.2967molkg-1.

The molality of a solution is given by the formula,

    Molality=MolesofBa(NO3)2Massofsolvent                                                                  (2)

The mass of the solvent is 500g.

The conversion of g to kg is done as,

    1000g=1kg

Therefore the conversion of 500g to kg is done as,

    500g=0.500kg

Substitute the molality of Ba(NO3)2 and mass of the solvent in equation (2).

    0.2967molkg1=MolesofBa(NO3)20.5kgMolesofBa(NO3)2=0.148mol

The number of moles of Ba(NO3)2 is given by the formula,

     MolesofBa(NO3)2=MassofBa(NO3)2MolarmassofBa(NO3)2                                     (3)

The molar mass of Ba(NO3)2 is 261.33gmol-1.

Substitute the number of moles of Ba(NO3)2 and molar mass of Ba(NO3)2 in equation (3).

    0.148mol=MassofBa(NO3)2261.33gmolMassofBa(NO3)2=38.67g_

Thus the mass of Ba(NO3)2 to be added to a 0.110molkg-1 solution of KNO3(aq) to increase its ionic strength to 1.0 is 38.67g_.

Want to see more full solutions like this?

Subscribe now to access step-by-step solutions to millions of textbook problems written by subject matter experts!
Students have asked these similar questions
Consider the structure of 1-bromo-2-fluoroethane. Part 1 of 2 Draw the Newman projection for the anti conformation of 1-bromo-2-fluoroethane, viewed down the C1-C2 bond. ✡ ぬ Part 2 of 2 H H F Br H H ☑ Draw the Newman projection for the gauche conformation of 1-bromo-2-fluoroethane, viewed down the C1-C2 bond. H F Br H H
Please help me answer this question. I don't understand how or where the different reagents will attach and it's mostly due to the wedge bond because I haven't seen a problem like this before.  Please provide a detailed explanation and a drawing showing how it can happen and what the final product will look like.
Which of the following compounds is the most acidic in the gas phase? Group of answer choices H2O SiH4 HBr H2S

Chapter 5 Solutions

ATKINS' PHYSICAL CHEMISTRY

Ch. 5 - Prob. 5A.4DQCh. 5 - Prob. 5A.5DQCh. 5 - Prob. 5A.1AECh. 5 - Prob. 5A.1BECh. 5 - Prob. 5A.2AECh. 5 - Prob. 5A.2BECh. 5 - Prob. 5A.3AECh. 5 - Prob. 5A.3BECh. 5 - Prob. 5A.4AECh. 5 - Prob. 5A.4BECh. 5 - Prob. 5A.5AECh. 5 - Prob. 5A.5BECh. 5 - Prob. 5A.6AECh. 5 - Prob. 5A.6BECh. 5 - Prob. 5A.7AECh. 5 - Prob. 5A.7BECh. 5 - Prob. 5A.8AECh. 5 - Prob. 5A.8BECh. 5 - Prob. 5A.9AECh. 5 - Prob. 5A.9BECh. 5 - Prob. 5A.10AECh. 5 - Prob. 5A.10BECh. 5 - Prob. 5A.11AECh. 5 - Prob. 5A.11BECh. 5 - Prob. 5A.1PCh. 5 - Prob. 5A.3PCh. 5 - Prob. 5A.4PCh. 5 - Prob. 5A.5PCh. 5 - Prob. 5A.6PCh. 5 - Prob. 5A.7PCh. 5 - Prob. 5B.1DQCh. 5 - Prob. 5B.2DQCh. 5 - Prob. 5B.3DQCh. 5 - Prob. 5B.4DQCh. 5 - Prob. 5B.5DQCh. 5 - Prob. 5B.6DQCh. 5 - Prob. 5B.7DQCh. 5 - Prob. 5B.1AECh. 5 - Prob. 5B.1BECh. 5 - Prob. 5B.2AECh. 5 - Prob. 5B.2BECh. 5 - Prob. 5B.3AECh. 5 - Prob. 5B.3BECh. 5 - Prob. 5B.4AECh. 5 - Prob. 5B.4BECh. 5 - Prob. 5B.5AECh. 5 - Prob. 5B.5BECh. 5 - Prob. 5B.6AECh. 5 - Prob. 5B.6BECh. 5 - Prob. 5B.7AECh. 5 - Prob. 5B.7BECh. 5 - Prob. 5B.8AECh. 5 - Prob. 5B.8BECh. 5 - Prob. 5B.9AECh. 5 - Prob. 5B.9BECh. 5 - Prob. 5B.10AECh. 5 - Prob. 5B.10BECh. 5 - Prob. 5B.11AECh. 5 - Prob. 5B.11BECh. 5 - Prob. 5B.12AECh. 5 - Prob. 5B.12BECh. 5 - Prob. 5B.1PCh. 5 - Prob. 5B.2PCh. 5 - Prob. 5B.3PCh. 5 - Prob. 5B.4PCh. 5 - Prob. 5B.5PCh. 5 - Prob. 5B.6PCh. 5 - Prob. 5B.9PCh. 5 - Prob. 5B.11PCh. 5 - Prob. 5B.13PCh. 5 - Prob. 5C.1DQCh. 5 - Prob. 5C.2DQCh. 5 - Prob. 5C.3DQCh. 5 - Prob. 5C.1AECh. 5 - Prob. 5C.1BECh. 5 - Prob. 5C.2AECh. 5 - Prob. 5C.2BECh. 5 - Prob. 5C.3AECh. 5 - Prob. 5C.3BECh. 5 - Prob. 5C.4AECh. 5 - Prob. 5C.4BECh. 5 - Prob. 5C.1PCh. 5 - Prob. 5C.2PCh. 5 - Prob. 5C.3PCh. 5 - Prob. 5C.4PCh. 5 - Prob. 5C.5PCh. 5 - Prob. 5C.6PCh. 5 - Prob. 5C.7PCh. 5 - Prob. 5C.8PCh. 5 - Prob. 5C.9PCh. 5 - Prob. 5C.10PCh. 5 - Prob. 5D.1DQCh. 5 - Prob. 5D.2DQCh. 5 - Prob. 5D.1AECh. 5 - Prob. 5D.1BECh. 5 - Prob. 5D.2AECh. 5 - Prob. 5D.2BECh. 5 - Prob. 5D.3AECh. 5 - Prob. 5D.3BECh. 5 - Prob. 5D.4AECh. 5 - Prob. 5D.4BECh. 5 - Prob. 5D.5AECh. 5 - Prob. 5D.5BECh. 5 - Prob. 5D.6AECh. 5 - Prob. 5D.1PCh. 5 - Prob. 5D.2PCh. 5 - Prob. 5D.3PCh. 5 - Prob. 5D.4PCh. 5 - Prob. 5D.5PCh. 5 - Prob. 5D.6PCh. 5 - Prob. 5D.7PCh. 5 - Prob. 5E.1DQCh. 5 - Prob. 5E.2DQCh. 5 - Prob. 5E.3DQCh. 5 - Prob. 5E.4DQCh. 5 - Prob. 5E.1AECh. 5 - Prob. 5E.1BECh. 5 - Prob. 5E.2AECh. 5 - Prob. 5E.2BECh. 5 - Prob. 5E.3AECh. 5 - Prob. 5E.3BECh. 5 - Prob. 5E.4AECh. 5 - Prob. 5E.4BECh. 5 - Prob. 5E.5AECh. 5 - Prob. 5E.5BECh. 5 - Prob. 5E.1PCh. 5 - Prob. 5E.2PCh. 5 - Prob. 5E.3PCh. 5 - Prob. 5F.1DQCh. 5 - Prob. 5F.2DQCh. 5 - Prob. 5F.3DQCh. 5 - Prob. 5F.4DQCh. 5 - Prob. 5F.5DQCh. 5 - Prob. 5F.1AECh. 5 - Prob. 5F.1BECh. 5 - Prob. 5F.2AECh. 5 - Prob. 5F.2BECh. 5 - Prob. 5F.3AECh. 5 - Prob. 5F.3BECh. 5 - Prob. 5F.4AECh. 5 - Prob. 5F.4BECh. 5 - Prob. 5F.5AECh. 5 - Prob. 5F.5BECh. 5 - Prob. 5F.6AECh. 5 - Prob. 5F.6BECh. 5 - Prob. 5F.7AECh. 5 - Prob. 5F.7BECh. 5 - Prob. 5F.8AECh. 5 - Prob. 5F.8BECh. 5 - Prob. 5F.1PCh. 5 - Prob. 5F.2PCh. 5 - Prob. 5F.3PCh. 5 - Prob. 5F.4PCh. 5 - Prob. 5.1IACh. 5 - Prob. 5.2IACh. 5 - Prob. 5.3IACh. 5 - Prob. 5.4IACh. 5 - Prob. 5.5IACh. 5 - Prob. 5.6IACh. 5 - Prob. 5.8IACh. 5 - Prob. 5.9IACh. 5 - Prob. 5.10IA
Knowledge Booster
Background pattern image
Similar questions
SEE MORE QUESTIONS
Recommended textbooks for you
Text book image
Chemistry
Chemistry
ISBN:9781305957404
Author:Steven S. Zumdahl, Susan A. Zumdahl, Donald J. DeCoste
Publisher:Cengage Learning
Text book image
Chemistry
Chemistry
ISBN:9781259911156
Author:Raymond Chang Dr., Jason Overby Professor
Publisher:McGraw-Hill Education
Text book image
Principles of Instrumental Analysis
Chemistry
ISBN:9781305577213
Author:Douglas A. Skoog, F. James Holler, Stanley R. Crouch
Publisher:Cengage Learning
Text book image
Organic Chemistry
Chemistry
ISBN:9780078021558
Author:Janice Gorzynski Smith Dr.
Publisher:McGraw-Hill Education
Text book image
Chemistry: Principles and Reactions
Chemistry
ISBN:9781305079373
Author:William L. Masterton, Cecile N. Hurley
Publisher:Cengage Learning
Text book image
Elementary Principles of Chemical Processes, Bind...
Chemistry
ISBN:9781118431221
Author:Richard M. Felder, Ronald W. Rousseau, Lisa G. Bullard
Publisher:WILEY