The mass of compound is given. By using the mass, the number of molecules present of each of the compound given in exercise 51 is to be determined. Concept introduction: The atomic mass is defined as the sum of number of protons and number of neutrons. Molar mass of a substance is defined as the mass of the substance in gram of one mole of that compound. The molar mass of any compound can be calculated by adding of atomic weight of individual atoms present in it. The amount of substance containing 12 g of pure carbon is called a mole. One mole of atoms always contains 6 .022 × 10 23 molecules. The number of molecules in one mole is also called Avogadro’s number . Hence, ( 6 .022 × 10 23 atoms ) ( 12 u 1 atom ) = 12 g ⇒ 1 u = 1 6 .022 × 10 23 g To determine : The number of molecules in 1 .00 g of NH 3 .
The mass of compound is given. By using the mass, the number of molecules present of each of the compound given in exercise 51 is to be determined. Concept introduction: The atomic mass is defined as the sum of number of protons and number of neutrons. Molar mass of a substance is defined as the mass of the substance in gram of one mole of that compound. The molar mass of any compound can be calculated by adding of atomic weight of individual atoms present in it. The amount of substance containing 12 g of pure carbon is called a mole. One mole of atoms always contains 6 .022 × 10 23 molecules. The number of molecules in one mole is also called Avogadro’s number . Hence, ( 6 .022 × 10 23 atoms ) ( 12 u 1 atom ) = 12 g ⇒ 1 u = 1 6 .022 × 10 23 g To determine : The number of molecules in 1 .00 g of NH 3 .
Definition Definition Number of atoms/molecules present in one mole of any substance. Avogadro's number is a constant. Its value is 6.02214076 × 10 23 per mole.
Chapter 5, Problem 59E
(a)
Interpretation Introduction
Interpretation: The mass of compound is given. By using the mass, the number of molecules present of each of the compound given in exercise 51 is to be determined.
Concept introduction: The atomic mass is defined as the sum of number of protons and number of neutrons.
Molar mass of a substance is defined as the mass of the substance in gram of one mole of that compound.
The molar mass of any compound can be calculated by adding of atomic weight of individual atoms present in it.
The amount of substance containing
12g of pure carbon is called a mole. One mole of atoms always contains
6.022×1023 molecules. The number of molecules in one mole is also called Avogadro’s number.
Hence,
(6.022×1023atoms)(12u1atom)=12g⇒1u=16.022×1023g
To determine: The number of molecules in
1.00g of
NH3.
(a)
Expert Solution
Explanation of Solution
Given
The mass of
NH3 is
1.00g.
The molar mass of
NH3 is,
(14.006+3×1.0079)g/mol=17.0297g/mol
Formula
The number of moles in
NH3 is calculated as,
MolesofNH3=MassofNH3MolarmassofNH3
Substitute the values of mass and molar mass of
NH3 in above equation.
The number of molecules is calculated by multiplying the number of moles with Avogadro’s number.
(b)
Interpretation Introduction
Interpretation: The mass of compound is given. By using the mass, the number of molecules present of each of the compound given in exercise 51 is to be determined.
Concept introduction: The atomic mass is defined as the sum of number of protons and number of neutrons.
Molar mass of a substance is defined as the mass of the substance in gram of one mole of that compound.
The molar mass of any compound can be calculated by adding of atomic weight of individual atoms present in it.
The amount of substance containing
12g of pure carbon is called a mole. One mole of atoms always contains
6.022×1023 molecules. The number of molecules in one mole is also called Avogadro’s number.
Hence,
(6.022×1023atoms)(12u1atom)=12g⇒1u=16.022×1023g
To determine: The number of molecules in
1.00g of
N2H4.
(b)
Expert Solution
Explanation of Solution
Given
The mass of
N2H4 is
1.00g.
The molar mass of
N2H4 is,
(2×14.006+4×1.0079)g/mol=32.0436g/mol
Formula
The number of moles in
N2H4 is calculated as,
MolesofN2H4=MassofN2H4MolarmassofN2H4
Substitute the values of mass and molar mass of
N2H4 in above equation.
The number of molecules is calculated by multiplying the number of moles with Avogadro’s number.
(c)
Interpretation Introduction
Interpretation: The mass of compound is given. By using the mass, the number of molecules present of each of the compound given in exercise 51 is to be determined.
Concept introduction: The atomic mass is defined as the sum of number of protons and number of neutrons.
Molar mass of a substance is defined as the mass of the substance in gram of one mole of that compound.
The molar mass of any compound can be calculated by adding of atomic weight of individual atoms present in it.
The amount of substance containing
12g of pure carbon is called a mole. One mole of atoms always contains
6.022×1023 molecules. The number of molecules in one mole is also called Avogadro’s number.
Hence,
(6.022×1023atoms)(12u1atom)=12g⇒1u=16.022×1023g
To determine: The number of molecules in
1.00g of
(NH4)2Cr2O7.
Extra for Experts: Your Future in Chemistry.
As you now know, there are countless jobs that involve chemistry!
Research a chemistry profession that interests you. In your answer, discuss which aspects of the job most appeal to you.
MISSED THIS? Read Section 19.9 (Pages 878-881); Watch IWE 19.10
Consider the following reaction:
CH3OH(g)
CO(g) + 2H2(g)
(Note that AG,CH3OH(g) = -162.3 kJ/mol and AG,co(g)=-137.2 kJ/mol.)
Part A
Calculate AG for this reaction at 25 °C under the following conditions:
PCH₂OH
Pco
PH2
0.815 atm
=
0.140 atm
0.170 atm
Express your answer in kilojoules to three significant figures.
Ο ΑΣΦ
AG = -150
Submit
Previous Answers Request Answer
□?
kJ
× Incorrect; Try Again; 2 attempts remaining
Calculate the free energy change under nonstandard conditions (AGrxn) by using the following relationship:
AGrxn = AGrxn + RTInQ,
AGxn+RTInQ,
where AGxn is the standard free energy change, R is the ideal gas constant, T is the temperature in kelvins, a
is the reaction quotient.
Provide Feedback
Next >
Identify and provide a brief explanation of Gas Chromatography (GC) within the context of chemical analysis of food. Incorporate the specific application name, provide a concise overview of sample preparation methods, outline instrumental parameters and conditions ultilized, and summarise the outcomes and findings achieved through this analytical approach.
Need a deep-dive on the concept behind this application? Look no further. Learn more about this topic, chemistry and related others by exploring similar questions and additional content below.