
Concept explainers
You have seven closed containers, each with equal masses of chlorine gas (Cl2) . You add 10.0 g of sodium to the first sample, 20.0 g of sodium to the second sample, and so on (adding 70.0 g of sodium to the seventh sample). Sodium and chlorine react to form sodium chloride according to the equation
After each reaction is complete, you collect and measure the amount of sodium chloride formed. A graph of your results is shown below.
Answer the following questions:
a. Explain the shape of the graph.
b. Calculate the mass of NaCl formed when 20.0 g of sodium is used.
c. Calculate the mass of Cl2 in each container.
d. Calculate the mass of NaCl formed when 50.0 g of sodium is used.
e. Identify the leftover reactant, and determine its mass for parts b and d above.
(a)

Interpretation: Seven closed containers, having equal amount of chlorine gas present in them, have been given. Sodium is added to the containers in the given pattern. After the completion of the reaction between sodium and chlorine, the amount of sodium chloride formed is measured. The stated questions related to the given process are to be answered.
Concept introduction: The amount of the sodium chloride formed depends upon the amount of sodium and chlorine gas present in each of the given containers.
To determine: The explanation regarding the shape of the graph.
Explanation of Solution
The amount of sodium chloride formed increases on increasing the quantity of sodium from the container one to four.
In the fifth container the addition of a greater amount of sodium than added to the previous container did not increase the amount of sodium chloride formed.
This indicates that the amount of chlorine gas present in the respective container is not sufficient to react with amount of sodium been added to the container. Hence, the amount of sodium chloride formed in the subsequent containers has a constant value.
The amount of chlorine gas present in the containers five, six and seven reacts with an equal amount of sodium to form an equal amount of sodium chloride.
(b)

Interpretation: Seven closed containers, having equal amount of chlorine gas present in them, have been given. Sodium is added to the containers in the given pattern. After the completion of the reaction between sodium and chlorine, the amount of sodium chloride formed is measured. The stated questions related to the given process are to be answered.
Concept introduction: The amount of the sodium chloride formed depends upon the amount of sodium and chlorine gas present in each of the given containers.
To determine: The mass of
Explanation of Solution
Given
The stated reaction is,
The atomic mass of sodium is
The molar mass of
According to the given reaction,
The mass of
(c)

Interpretation: Seven closed containers, having equal amount of chlorine gas present in them, have been given. Sodium is added to the containers in the given pattern. After the completion of the reaction between sodium and chlorine, the amount of sodium chloride formed is measured. The stated questions related to the given process are to be answered.
Concept introduction: The amount of the sodium chloride formed depends upon the amount of sodium and chlorine gas present in each of the given containers.
To determine: The mass of
Explanation of Solution
Given
The stated reaction is,
The atomic mass of sodium is
The molar mass of
According to the given graph, chlorine gas present reacts completely with
According to the given reaction,
The mass of
(d)

Interpretation: Seven closed containers, having equal amount of chlorine gas present in them, have been given. Sodium is added to the containers in the given pattern. After the completion of the reaction between sodium and chlorine, the amount of sodium chloride formed is measured. The stated questions related to the given process are to be answered.
Concept introduction: The amount of the sodium chloride formed depends upon the amount of sodium and chlorine gas present in each of the given containers.
To determine: The mass of
Explanation of Solution
Given
The stated reaction is,
The atomic mass of sodium is
The molar mass of
According to the given graph, chlorine gas present reacts completely with
Hence, only
According to the given reaction,
The mass of
(e)

Interpretation: Seven closed containers, having equal amount of chlorine gas present in them, have been given. Sodium is added to the containers in the given pattern. After the completion of the reaction between sodium and chlorine, the amount of sodium chloride formed is measured. The stated questions related to the given process are to be answered.
Concept introduction: The amount of the sodium chloride formed depends upon the amount of sodium and chlorine gas present in each of the given containers.
To determine: The left over reactant in parts (b) and (d) and their respective mass.
Explanation of Solution
The leftover reactant in part (b) is the chlorine gas. The mass of chlorine left unreacted is
To determine: The left over reactant in parts (b) and its respective mass.
The leftover reactant in part (b) is the chlorine gas. The mass of chlorine left unreacted is
Given
The stated reaction is,
The atomic mass of sodium is
The molar mass of
According to the given reaction,
The mass of chlorine present in the container is
The amount of chlorine left unreacted is
To determine: The left over reactant in parts (d) and its respective mass.
The leftover reactant in part (d) is sodium. The mass of sodium left unreacted is
According to the given graph, chlorine gas present reacts completely with
Hence, only
The amount of sodium left unreacted is
The mass of chlorine gas left unreacted in the stated reaction
The mass of sodium left unreacted in the stated reaction
Want to see more full solutions like this?
Chapter 5 Solutions
EBK CHEMISTRY: AN ATOMS FIRST APPROACH
- Draw the four most importantcontributing structures of the cation intermediate thatforms in the electrophilic chlorination of phenol,(C6H5OH) to form p-chlorophenol. Put a circle aroundthe best one. Can you please each step and also how you would approach a similar problem. Thank you!arrow_forwardA 100mM lactic acid/lactate buffer was found to have a lactate to lactic acid ratio of 2 and a pH of 4.2. What is the pKa of lactic acid? Can you please help show the calculations?arrow_forwardUsing line angle formulas, draw thestructures of and name four alkanes that have total of 7carbons, one of which is tertiary.Please explain this in detail and can you also explain how to approach a similar problem like this as well?arrow_forward
- Using dashed line wedge projections drawthe indicated compounds and indicate whether thecompound you have drawn is R or S.(a) The two enantiomers of 2-chlorobutane. Can you please explain your steps and how you would approach a similar problem. Thank you!arrow_forward5) There are no lone pairs shown in the structure below. Please add in all lone pairs and then give the hybridization scheme for the compound. (8) 10,11 7) 1.2.3 H 4 | 14 8) COC 12 13 H 16 15 H7 9) - 5.6 C 8 H 10) H 1). 2) 3)_ 11) 12) 13) 4)_ 14) 5) 15) 16) 6)arrow_forwardThe sum of the numbers in the name of isA. 11; B. 13; C. 10; D. 12; E. none of the other answers iscorrect. I believe the awnser should be E to this problem but the solution to this problem is D 12. I'm honestly unsure how that's the solution. If you can please explain the steps to this type of problem and how to approach a problem like this it would be greatly appreciated!arrow_forward
- Consider the following data for phosphorus: g atomic mass 30.974 mol electronegativity 2.19 kJ electron affinity 72. mol kJ ionization energy 1011.8 mol kJ heat of fusion 0.64 mol You may find additional useful data in the ALEKS Data tab. Does the following reaction absorb or release energy? 2+ + (1) P (g) + e → P (g) Is it possible to calculate the amount of energy absorbed or released by reaction (1) using only the data above? If you answered yes to the previous question, enter the amount of energy absorbed or released by reaction (1): Does the following reaction absorb or release energy? 00 release absorb Can't be decided with the data given. yes no ☐ kJ/mol (²) P* (8) + + + e →>> P (g) Is it possible to calculate the amount of energy absorbed or released by reaction (2) using only the data above? If you answered yes to the previous question, enter the amount of energy absorbed or released by reaction (2): ☐ release absorb Can't be decided with the data given. yes no kJ/mol аarrow_forwardThe number of hydrogens in an alkyne that has a main chain of 14carbons to which are attached a cyclobutyl ring, a benzene ring, an–OH group, and a Br is A. 34; B. 35; C. 36; D. 24; E. 43arrow_forwardHello! I have a 500 Hz H-NMR for 1,5-bis-(4-methoxyphenyl)-penta-1,4-dien-3-one. I need to label the signals with the corresponding H's. Then, find out if the two alkenes are cis or trans by calculating the J values. I believe that I have the H-NMR labeled correctly, but not sure if I got the J values correct to determine if the two alkenes in the compound will make the compound cis or trans.arrow_forward
- Chemistry for Engineering StudentsChemistryISBN:9781337398909Author:Lawrence S. Brown, Tom HolmePublisher:Cengage LearningChemistry & Chemical ReactivityChemistryISBN:9781337399074Author:John C. Kotz, Paul M. Treichel, John Townsend, David TreichelPublisher:Cengage LearningChemistry & Chemical ReactivityChemistryISBN:9781133949640Author:John C. Kotz, Paul M. Treichel, John Townsend, David TreichelPublisher:Cengage Learning
- ChemistryChemistryISBN:9781305957404Author:Steven S. Zumdahl, Susan A. Zumdahl, Donald J. DeCostePublisher:Cengage LearningChemistry: An Atoms First ApproachChemistryISBN:9781305079243Author:Steven S. Zumdahl, Susan A. ZumdahlPublisher:Cengage Learning





