
Concept explainers
Consider the following unbalanced equation:
What masses of calcium sulfate and phosphoric acid can be produced from the reaction of 1.0 kg calcium phosphate with 1.0 kg concentrated sulfuric acid (98% H2SO4 by mass)?

Interpretation: The amount of calcium sulfate and phosphoric acid that can be produced from the stated reaction is to be calculated.
Concept introduction: The mass of a substance can be obtained by using the number of moles of the substance present and its molar mass. The formula used to calculate the mass of a given substance is,
To determine: The mass of Calcium sulfate and phosphoric acid that can be formed by the stated reaction.
Answer to Problem 118E
The mass of calcium sulfate and phosphoric acid formed is
Explanation of Solution
To determine: The balanced form of the stated chemical equation.
According to the law of conservation of mass, mass can neither be created nor destroyed. The mass of reactants is equal to the mass of products formed. Therefore a chemical equation, having lesser number of moles of an element on either side of a reaction, is balanced using appropriate numerical coefficients to satisfy the law of conservation of mass.
The given reaction is,
Adding the coefficient
Adding the coefficient
Given
The balanced chemical reaction is,
The given mass of
The given mass of concentrated
The given amount of concentrated sulfuric acid is given to have
Therefore, the mass of sulfuric acid
The molar mass of
The molar mass of
Formula
The number of moles of a substance is calculated by the formula,
Substitute the value of the given mass and the molar mass of
According to the stated reaction,
The moles of
Therefore, some amount of
According to the stated reaction,
The molar mass of
The mass of a substance is calculated by the formula,
Substitute the value of the number of moles of
Given
The balanced chemical reaction is,
According to the stated reaction,
The molar mass of
The mass of a substance is calculated by the formula,
Substitute the value of the number of moles of
The amount of calcium sulfate and phosphoric acid formed is
Want to see more full solutions like this?
Chapter 5 Solutions
EBK CHEMISTRY: AN ATOMS FIRST APPROACH
- What is the IUPAC name of the following compound? CH₂CH₂ H CI H₂CH₂C H CH₂ Selected Answer: O (35,4R)-4 chloro-3-ethylpentane Correctarrow_forwardCurved arrows are used to illustrate the flow of electrons. Using the provided starting and product structures, draw the curved electrons-pushing arrows for the following reaction or mechanistic step(s).arrow_forwardCurved arrows are used to illustrate the flow of electrons. Using the provided starting and product structures, draw the curved electron-pushing arrows for the following reaction or mechanistic step(s). Be sure to account for all bond-breaking and bond-making steps. I I I H Select to Add Arrows HCI, CH3CH2OHarrow_forward
- Curved arrows are used to illustrate the flow of electrons. Use the reaction conditions provided and the follow the arrows to draw the intermediate and product in this reaction or mechanistic step(s).arrow_forwardCurved arrows are used to illustrate the flow of electrons. Use the reaction conditions provided and follow the curved arrows to draw the intermediates and product of the following reaction or mechanistic step(s).arrow_forwardCurved arrows are used to illustrate the flow of electrons. Use the reaction conditions provided and follow the arrows to draw the intermediate and the product in this reaction or mechanistic step(s).arrow_forward
- Look at the following pairs of structures carefully to identify them as representing a) completely different compounds, b) compounds that are structural isomers of each other, c) compounds that are geometric isomers of each other, d) conformers of the same compound (part of structure rotated around a single bond) or e) the same structure.arrow_forwardGiven 10.0 g of NaOH, what volume of a 0.100 M solution of H2SO4 would be required to exactly react all the NaOH?arrow_forward3.50 g of Li are combined with 3.50 g of N2. What is the maximum mass of Li3N that can be produced? 6 Li + N2 ---> 2 Li3Narrow_forward
- 3.50 g of Li are combined with 3.50 g of N2. What is the maximum mass of Li3N that can be produced? 6 Li + N2 ---> 2 Li3Narrow_forwardConcentration Trial1 Concentration of iodide solution (mA) 255.8 Concentration of thiosulfate solution (mM) 47.0 Concentration of hydrogen peroxide solution (mM) 110.1 Temperature of iodide solution ('C) 25.0 Volume of iodide solution (1) used (mL) 10.0 Volume of thiosulfate solution (5:03) used (mL) Volume of DI water used (mL) Volume of hydrogen peroxide solution (H₂O₂) used (mL) 1.0 2.5 7.5 Time (s) 16.9 Dark blue Observations Initial concentration of iodide in reaction (mA) Initial concentration of thiosulfate in reaction (mA) Initial concentration of hydrogen peroxide in reaction (mA) Initial Rate (mA's)arrow_forwardDraw the condensed or line-angle structure for an alkene with the formula C5H10. Note: Avoid selecting cis-/trans- isomers in this exercise. Draw two additional condensed or line-angle structures for alkenes with the formula C5H10. Record the name of the isomers in Data Table 1. Repeat steps for 2 cyclic isomers of C5H10arrow_forward
- Chemistry for Engineering StudentsChemistryISBN:9781337398909Author:Lawrence S. Brown, Tom HolmePublisher:Cengage LearningChemistryChemistryISBN:9781305957404Author:Steven S. Zumdahl, Susan A. Zumdahl, Donald J. DeCostePublisher:Cengage LearningChemistry: An Atoms First ApproachChemistryISBN:9781305079243Author:Steven S. Zumdahl, Susan A. ZumdahlPublisher:Cengage Learning
- Chemistry: The Molecular ScienceChemistryISBN:9781285199047Author:John W. Moore, Conrad L. StanitskiPublisher:Cengage LearningChemistry & Chemical ReactivityChemistryISBN:9781337399074Author:John C. Kotz, Paul M. Treichel, John Townsend, David TreichelPublisher:Cengage Learning





