Concept explainers
(a)
Interpretation:
The volume of a gas increase, decrease or remain unchanged if the pressure is decreased from
Concept introduction:
According to Boyle’s law, the volume occupied by the gas is inversely proportional to the pressure at the constant temperature.
The relationship between pressure and volume can be expressed as follows,
Here,
According to Charles's law, the volume occupied by the gas is directly proportional to the temperature at the constant pressure.
The relationship between pressure and temperature can be expressed as follows,
Here,
According to Avogadro’s law, the volume occupied by the gas is directly proportional to the mole of the gas at the constant pressure and temperature.
The relationship between volume and mole can be expressed as follows,
Here,
The ideal gas equation can be expressed as follows,
Here,
(b)
Interpretation:
The volume of a gas increase, decrease or remain unchanged if the pressure is decreased from
Concept introduction:
According to Boyle’s law, the volume occupied by the gas is inversely proportional to the pressure at the constant temperature.
The relationship between pressure and volume can be expressed as follows,
Here,
According to Charles's law, the volume occupied by the gas is directly proportional to the temperature at the constant pressure.
The relationship between pressure and temperature can be expressed as follows,
Here,
According to Avogadro’s law, the volume occupied by the gas is directly proportional to the mole of the gas at the constant pressure and temperature.
The relationship between volume and mole can be expressed as follows,
Here,
The ideal gas equation can be expressed as follows,
Here,
(c)
Interpretation:
The volume of a gas increase, decrease or remain unchanged if the pressure is decreased from
Concept introduction:
According to Boyle’s law, the volume occupied by the gas is inversely proportional to the pressure at the constant temperature.
The relationship between pressure and volume can be expressed as follows,
Here,
According to Charles's law, the volume occupied by the gas is directly proportional to the temperature at the constant pressure.
The relationship between pressure and temperature can be expressed as follows,
Here,
According to Avogadro’s law, the volume occupied by the gas is directly proportional to the mole of the gas at the constant pressure and temperature.
The relationship between volume and mole can be expressed as follows,
Here,
The ideal gas equation can be expressed as follows,
Here,
(d)
Interpretation:
The volume of a gas increase, decrease or remain unchanged if the pressure is decreased from
Concept introduction:
According to Boyle’s law, the volume occupied by the gas is inversely proportional to the pressure at the constant temperature.
The relationship between pressure and volume can be expressed as follows,
Here,
According to Charles's law, the volume occupied by the gas is directly proportional to the temperature at the constant pressure.
The relationship between pressure and temperature can be expressed as follows,
Here,
According to Avogadro’s law, the volume occupied by the gas is directly proportional to the mole of the gas at the constant pressure and temperature.
The relationship between volume and mole can be expressed as follows,
Here,
The ideal gas equation can be expressed as follows,
Here,

Want to see the full answer?
Check out a sample textbook solution
Chapter 5 Solutions
CHEMISTRY: THE MOLECULAR NATURE OF MATTE
- Steps and explanation.arrow_forwardProvide steps and explanation please.arrow_forwardDraw a structural formula for the major product of the acid-base reaction shown. H 0 N + HCI (1 mole) CH3 N' (1 mole) CH3 You do not have to consider stereochemistry. ● • Do not include counter-ions, e.g., Na+, I, in your answer. . In those cases in which there are two reactants, draw only the product from 989 CH3 344 ? [Farrow_forward
- Assign these protonarrow_forwardCould you please solve the first problem in this way and present it similarly but color-coded or step by step so I can understand it better? Thank you!arrow_forwardCould you please solve the first problem in this way and present it similarly but color-coded or step by step so I can understand it better? Thank you!arrow_forward
- ChemistryChemistryISBN:9781305957404Author:Steven S. Zumdahl, Susan A. Zumdahl, Donald J. DeCostePublisher:Cengage LearningChemistryChemistryISBN:9781259911156Author:Raymond Chang Dr., Jason Overby ProfessorPublisher:McGraw-Hill EducationPrinciples of Instrumental AnalysisChemistryISBN:9781305577213Author:Douglas A. Skoog, F. James Holler, Stanley R. CrouchPublisher:Cengage Learning
- Organic ChemistryChemistryISBN:9780078021558Author:Janice Gorzynski Smith Dr.Publisher:McGraw-Hill EducationChemistry: Principles and ReactionsChemistryISBN:9781305079373Author:William L. Masterton, Cecile N. HurleyPublisher:Cengage LearningElementary Principles of Chemical Processes, Bind...ChemistryISBN:9781118431221Author:Richard M. Felder, Ronald W. Rousseau, Lisa G. BullardPublisher:WILEY





