CHEMISTRY: THE MOLECULAR NATURE OF MATTE
CHEMISTRY: THE MOLECULAR NATURE OF MATTE
9th Edition
ISBN: 9781265974688
Author: SILBERBERG
Publisher: MCG
bartleby

Concept explainers

bartleby

Videos

Question
Book Icon
Chapter 5, Problem 5.22P

(a)

Interpretation Introduction

Interpretation:

The volume of gas increase, decrease or remain unchanged if the temperature decreases from 800 K to 400 K at constant pressure is to be identified.

Concept introduction:

According to Boyle’s law, the volume occupied by the gas is inversely proportional to the pressure at the constant temperature.

The relationship between pressure and volume can be expressed as follows,

PV=constant

Here, P is the pressure and V is the volume.

According to Charles's law, the volume occupied by the gas is directly proportional to the temperature at the constant pressure.

The relationship between pressure and temperature can be expressed as follows,

V α T

Here, T is the temperature and V is the volume.

According to Avogadro’s law, the volume occupied by the gas is directly proportional to the mole of the gas at the constant pressure and temperature.

The relationship between volume and mole can be expressed as follows,

α n

Here, n is the mole of the gas and V is the volume.

The ideal gas equation can be expressed as follows,

PV=nRT

Here, P is the pressure, V is the volume, T is the temperature, n is the mole of the gas and R is the gas constant.

(b)

Interpretation Introduction

Interpretation:

The volume of gas increase, decrease or remain unchanged if the temperature decreased from 250°C to 500 °C is to be identified.

Concept introduction:

According to Boyle’s law, the volume occupied by the gas is inversely proportional to the pressure at the constant temperature.

The relationship between pressure and volume can be expressed as follows,

PV=constant

Here, P is the pressure and V is the volume.

According to Charles's law, the volume occupied by the gas is directly proportional to the temperature at the constant pressure.

The relationship between pressure and temperature can be expressed as follows,

V α T

Here, T is the temperature and V is the volume.

According to Avogadro’s law, the volume occupied by the gas is directly proportional to the mole of the gas at the constant pressure and temperature.

The relationship between volume and mole can be expressed as follows,

α n

Here, n is the mole of the gas and V is the volume.

The ideal gas equation can be expressed as follows,

PV=nRT

Here, P is the pressure, V is the volume, T is the temperature, n is the mole of the gas and R is the gas constant.

(c)

Interpretation Introduction

Interpretation:

The volume of gas increase, decrease or remain unchanged if the pressure increases from 2 atm to 6 atm at constant temperature is to be identified.

Concept introduction:

According to Boyle’s law, the volume occupied by the gas is inversely proportional to the pressure at the constant temperature.

The relationship between pressure and volume can be expressed as follows,

PV=constant

Here, P is the pressure and V is the volume.

According to Charles's law, the volume occupied by the gas is directly proportional to the temperature at the constant pressure.

The relationship between pressure and temperature can be expressed as follows,

V α T

Here, T is the temperature and V is the volume.

According to Avogadro’s law, the volume occupied by the gas is directly proportional to the mole of the gas at the constant pressure and temperature.

The relationship between volume and mole can be expressed as follows,

α n

Here, n is the mole of the gas and V is the volume.

The ideal gas equation can be expressed as follows,

PV=nRT

Here, P is the pressure, V is the volume, T is the temperature, n is the mole of the gas and R is the gas constant.

Blurred answer
Students have asked these similar questions
In the box below, specify which of the given compounds are very soluble in polar aprotic solvents. You may select more than one compound. Choose one or more: NaCl NH4Cl CH3CH2CH2CH2CH2CN CH3CH2OH hexan-2-one NaOH CH3SCH3
On the following structure, select all of the atoms that could ACCEPT a hydrogen bond. Ignore possible complications of aromaticity. When selecting be sure to click on the center of the atom.
Rank the compounds below from lowest to highest melting point.
Knowledge Booster
Background pattern image
Chemistry
Learn more about
Need a deep-dive on the concept behind this application? Look no further. Learn more about this topic, chemistry and related others by exploring similar questions and additional content below.
Similar questions
SEE MORE QUESTIONS
Recommended textbooks for you
Text book image
Chemistry
Chemistry
ISBN:9781305957404
Author:Steven S. Zumdahl, Susan A. Zumdahl, Donald J. DeCoste
Publisher:Cengage Learning
Text book image
Chemistry
Chemistry
ISBN:9781259911156
Author:Raymond Chang Dr., Jason Overby Professor
Publisher:McGraw-Hill Education
Text book image
Principles of Instrumental Analysis
Chemistry
ISBN:9781305577213
Author:Douglas A. Skoog, F. James Holler, Stanley R. Crouch
Publisher:Cengage Learning
Text book image
Organic Chemistry
Chemistry
ISBN:9780078021558
Author:Janice Gorzynski Smith Dr.
Publisher:McGraw-Hill Education
Text book image
Chemistry: Principles and Reactions
Chemistry
ISBN:9781305079373
Author:William L. Masterton, Cecile N. Hurley
Publisher:Cengage Learning
Text book image
Elementary Principles of Chemical Processes, Bind...
Chemistry
ISBN:9781118431221
Author:Richard M. Felder, Ronald W. Rousseau, Lisa G. Bullard
Publisher:WILEY
Step by Step Stoichiometry Practice Problems | How to Pass ChemistryMole Conversions Made Easy: How to Convert Between Grams and Moles; Author: Ketzbook;https://www.youtube.com/watch?v=b2raanVWU6c;License: Standard YouTube License, CC-BY