
Concept explainers
Interpretation:
A mixture of Ar (0.40 mol), O2 (0.50 mol), and CH4 (0.30 mol) exerts a pressure of 740 mm Hg. If the methane and oxygen are ignited and complete combustion occurs, the final pressure of Ar, CO2, H2O, and the remainder of the excess reactant and total pressure of the system should be calculated.
Concept introduction:
An ideal gas which is known as the perfect gas is a gas whose volume V, Pressure P and temperature T are related through the
Here,
-
n = Number of moles of the gas
R = Universal gas constant
T = Temperature
P = Pressure
Ideal gases are described as the molecules which have negligible size but have an average molar kinetic energy which is dependent on the temperature. When temperature is low most of the gases behave like ideal gases and the ideal

Answer to Problem 5.90PAE
Solution:
Partial Pressure of each gas is as follows:
Total pressure = 740 mmHg
Given:
The number of moles of gases at initial stage are as follows:
Explanation of Solution
Thus, total number of moles =
As given total pressure = P = 740 mmHg = P1 The combustion reaction is as follows:
Argon being a noble gas does not react in the reaction.
Thus, as per the above equation limiting reagent is Oxygen
Now,
0.50 mol of O2 forms no of mol of
And,
0.30 mol of
Thus, oxygen is limiting reagent here,
Calculate the number of moles of
0.50 mol of O2 forms no of mol of
Remaining CH4will be:
Thus, number of moles of gas after combustion will be:
Thus, total number of moles =
Total Pressure = P2that needs to be calculated.
As per the ideal gas equation,
Therefore, the total pressure of the system remains the same that is 740 mmHg
Now, partial pressure is calculated as follows:
Suppose for gas A,
Here,
Ar =
CO2=
H2O =
CH4 =
An ideal gas which is known as the perfect gas is a gas whose volume V, Pressure P and temperature T are related through the ideal gas laws. Based on the ideal gas law concept we calculated that
Partial Pressure of each gas is as follows:
Total pressure = 740 mmHg
Want to see more full solutions like this?
Chapter 5 Solutions
Chemistry for Engineering Students
- Deducing the reactants of a Diels-Alder reaction vn the molecule on the right-hand side of this organic reaction be made in good yield from no more than two reactants, in one step, by moderately heating the reactants? ? Δ O If your answer is yes, then draw the reactant or reactants in the drawing area below. You can draw the reactants in any arrangement you like. • If your answer is no, check the box under the drawing area instead. Click and drag to start drawing a structure. Product can't be made in one step. Explanation Checkarrow_forwardPredict the major products of the following organic reaction: Δ ? Some important notes: • Draw the major product, or products, of the reaction in the drawing area below. • If there aren't any products, because no reaction will take place, check the box below the drawing area instead. • Be sure to use wedge and dash bonds when necessary, for example to distinguish between major products that are enantiomers. Explanation Check Click and drag to start drawing a structure. Larrow_forward> Can the molecule on the right-hand side of this organic reaction be made in good yield from no more than two reactants, in one step, by moderately heating the reactants? ? Δ • If your answer is yes, then draw the reactant or reactants in the drawing area below. You can draw the reactants in any arrangement you like. If your answer is no, check the box under the drawing area instead. Explanation Check Click and drag to start drawing a structure. Х © 2025 McGraw Hill LLC. All Rights Reserved. Terms of Use | Privacy Center | Accesarrow_forward
- Predict the major products of the following organic reaction: O O + A ? Some important notes: • Draw the major product, or products, of the reaction in the drawing area below. • If there aren't any products, because no reaction will take place, check the box below the drawing area instead. • Be sure to use wedge and dash bonds when necessary, for example to distinguish between major products that are enantiomers. Explanation Check Click and drag to start drawing a structure. eserved. Terms of Use | Privacy Center >arrow_forward(EXM 2, PRBLM 3) Here is this problem, can you explain it to me and show how its done. Thank you I need to see the work for like prbl solving.arrow_forwardcan someone draw out the reaction mechanism for this reaction showing all bonds, intermediates and side products Comment on the general features of the 1H-NMR spectrum of isoamyl ester provided belowarrow_forward
- Chemistry for Engineering StudentsChemistryISBN:9781337398909Author:Lawrence S. Brown, Tom HolmePublisher:Cengage LearningChemistry: An Atoms First ApproachChemistryISBN:9781305079243Author:Steven S. Zumdahl, Susan A. ZumdahlPublisher:Cengage LearningIntroduction to General, Organic and BiochemistryChemistryISBN:9781285869759Author:Frederick A. Bettelheim, William H. Brown, Mary K. Campbell, Shawn O. Farrell, Omar TorresPublisher:Cengage Learning
- Chemistry: The Molecular ScienceChemistryISBN:9781285199047Author:John W. Moore, Conrad L. StanitskiPublisher:Cengage LearningChemistryChemistryISBN:9781305957404Author:Steven S. Zumdahl, Susan A. Zumdahl, Donald J. DeCostePublisher:Cengage Learning





