EBK PHYSICS FOR SCIENTISTS AND ENGINEER
9th Edition
ISBN: 8220100663987
Author: Jewett
Publisher: Cengage Learning US
expand_more
expand_more
format_list_bulleted
Textbook Question
Chapter 5, Problem 5.73AP
A young woman buys an inexpensive used car stock car racing. It can attain highway speed with an acceleration of 8.40 mi/h • s. By making changes to its engine, she can increase the net horizontal force on the car by 24.0%. With much less expense, she can remove material from the hotly of the car to decrease its mass by 24.0%. (a) Winch of these two changes. if either, will result, in the greater increase in the car’s acceleration? (b) If she makes both changes. what acceleration can she attain?
Expert Solution & Answer
Want to see the full answer?
Check out a sample textbook solutionStudents have asked these similar questions
A 86 kg diver steps off a 10 m high diving board and drops from rest straight down in to the water. If he comes to the rest 7.20 m beneath the surface of the water determine the average resistive force exerted by the water.
A softball having a mass of 0.25 kg is pitched horizontally at 120 km/h By the time it reaches the plate, it may have slowed by 10%. Neglecting gravity, estimate the average force of air resistance during a pitch. The distance between the plate and the pitcher is about 15 m.
a)Calculate the force (in N) needed to bring a 800 kg car to rest from a speed of 95.0 km/h in a distance of 105 m (a fairly typical distance for a non-panic stop). b)Suppose instead the car hits a concrete abutment at full speed and is brought to a stop in 2.00 m. Calculate the force exerted on the car and compare it with the force found in part (a).
Chapter 5 Solutions
EBK PHYSICS FOR SCIENTISTS AND ENGINEER
Ch. 5 - Which of the following statements is correct? (a)...Ch. 5 - An object experiences no acceleration. Which of...Ch. 5 - You push an object, initially at rest, across a...Ch. 5 - Suppose you are talking by interplanetary...Ch. 5 - (i) If a fly collides with the windshield of a...Ch. 5 - You press your physics textbook flat against a...Ch. 5 - Charlie is playing with his daughter Toney in the...Ch. 5 - The driver of a speeding empty truck slams on the...Ch. 5 - In Figure OQ5.2, a locomotive has broken through...Ch. 5 - The third graders are on one side of a schoolyard,...
Ch. 5 - The driver of a speeding truck slams on the brakes...Ch. 5 - An experiment is performed on a puck on a level...Ch. 5 - The manager of a department store is pushing...Ch. 5 - Two objects are connected by a siring that passes...Ch. 5 - An object of mass m is sliding with speed v, at...Ch. 5 - A truck loaded with sand accelerates along a...Ch. 5 - A large crate of mass m is place on the flatbed of...Ch. 5 - If an object is in equilibrium, which of the...Ch. 5 - A crate remains stationary after it has been...Ch. 5 - An object of mass m moves with acceleration a down...Ch. 5 - If you hold a horizontal metal bar several...Ch. 5 - Your hands are wet, and the restroom towel...Ch. 5 - In the motion picture It Happened One Night...Ch. 5 - If a car is traveling due westward with a constant...Ch. 5 - A passenger sitting in the rear of a bus claims...Ch. 5 - A child tosses a ball straight up. She says that...Ch. 5 - A person holds a ball in her hand, (a) Identify...Ch. 5 - A spherical rubber balloon inflated with air is...Ch. 5 - A rubber ball is dropped onto the floor. What...Ch. 5 - Twenty people participate in a tug-of-war. The two...Ch. 5 - Can an object exert a force on itself? Argue for...Ch. 5 - When you push on a box with a 200-N force instead...Ch. 5 - A weight lifter stands on a bathroom scale. He...Ch. 5 - An athlete grips a light rope that passes over a...Ch. 5 - Suppose you are driving a classic car. Why should...Ch. 5 - In Figure CQ5.16, the light, taut, unstretchable...Ch. 5 - Describe two examples in which the force of...Ch. 5 - The mayor of a city reprimands some city employees...Ch. 5 - Give reasons for the answers to each of the...Ch. 5 - Balancing carefully, three boys inch out onto a...Ch. 5 - Identity action-reaction pairs in the following...Ch. 5 - As shown in Figure CQ5.22, student A, a 55-kg...Ch. 5 - Prob. 5.23CQCh. 5 - A certain orthodontist uses a wire brace to align...Ch. 5 - If a man weighs 900 N on the Earth, what would he...Ch. 5 - A 3.00-kg object undergoes an acceleration given...Ch. 5 - A certain orthodontist uses a wire brace to align...Ch. 5 - A toy rocket engine is securely fastened to a...Ch. 5 - The average speed of a nitrogen molecule in air is...Ch. 5 - The distinction between mass and weight was...Ch. 5 - (a) A cat with a mass of 850 kg in moving to the...Ch. 5 - Review. The gravitational force exerted on a...Ch. 5 - Review. The gravitational force exerted on a...Ch. 5 - Review. An electron of mass 9. 11 1031 kg has an...Ch. 5 - Besides the gravitational force, a 2.80-kg object...Ch. 5 - One or more external forces, large enough to be...Ch. 5 - A brick of mass M has been placed on a rubber...Ch. 5 - Two forces, F1=(6.00i4.00j)N and...Ch. 5 - The force exerted by the wind on the sails of a...Ch. 5 - An object of mass m is dropped al t = 0 from the...Ch. 5 - A force F applied to an object of mass m1,...Ch. 5 - Two forces F1 and F2 act on a 5.00-kg object....Ch. 5 - You stand on the seat of a chair and then hop off....Ch. 5 - A 15.0-lb block rests on the floor. (a) What force...Ch. 5 - Review. Three forces acting on an object are given...Ch. 5 - A 1 00-kg car is pulling a 300-kg trailer....Ch. 5 - If a single constant force acts on an object that...Ch. 5 - Review. Figure P5.15 shows a worker poling a boata...Ch. 5 - An iron bolt of mass 65.0 g hangs from a string...Ch. 5 - Figure P5.27 shows the horizontal forces acting on...Ch. 5 - The systems shown in Figure P5.28 are in...Ch. 5 - Assume the three blocks portrayed in Figure P5.29...Ch. 5 - A block slides down a frictionless plane having an...Ch. 5 - The distance between two telephone poles is 50.0...Ch. 5 - A 3.00-kg object is moving in a plane, with its x...Ch. 5 - A bag of cement weighing 325 N hangs in...Ch. 5 - A bag of cement whose weight is Fg hangs in...Ch. 5 - Two people pull as hard as they can on horizontal...Ch. 5 - Figure P5.36 shows loads hanging from the ceiling...Ch. 5 - An object of mass m = 1.00 kg is observed to have...Ch. 5 - A setup similar to the one shown in Figure P5.38...Ch. 5 - A simple accelerometer is constructed inside a car...Ch. 5 - An object of mass m1 = 5.00 kg placed on a...Ch. 5 - Figure P5.41 shows the speed of a persons body as...Ch. 5 - Two objects are connected by a light string that...Ch. 5 - Two blocks, each of mass m = 3.50 kg, are hung...Ch. 5 - Two blocks, each of mass m, are hung from the...Ch. 5 - In the system shown in Figure P5.23, a horizontal...Ch. 5 - An object of mass m1 hangs from a string that...Ch. 5 - A block is given an initial velocity of 5.00 m/s...Ch. 5 - A car is stuck in the mud. A tow truck pulls on...Ch. 5 - Two blocks of mass 3.50 kg and 8.00 kg arc...Ch. 5 - In the Atwood machine discussed in Example 5.9 and...Ch. 5 - In Example 5.8, we investigated the apparent...Ch. 5 - Consider a large truck carrying a heavy load, such...Ch. 5 - Review. A rifle bullet with a mass of 12.0 g...Ch. 5 - Review. A car is traveling at 50.0 mi/h on a...Ch. 5 - A 25.0-kg block is initially at rest oil a...Ch. 5 - Why is the following situation impassible? Your...Ch. 5 - To determine the coefficients of friction between...Ch. 5 - Before 1960m people believed that the maximum...Ch. 5 - To meet a U.S. Postal Service requirement,...Ch. 5 - A woman at an airport is towing her 20.0-kg...Ch. 5 - Review. A 3.00-kg block starts from rest at the...Ch. 5 - The person in Figure P5.30 weighs 170 lb. As seen...Ch. 5 - A 9.00-kg hanging object is connected by a light,...Ch. 5 - Three objects are connected on a table as shown in...Ch. 5 - Two blocks connected by a rope of negligible mass...Ch. 5 - A block of mass 3.00 kg is pushed up against a...Ch. 5 - Review. One side of the roof of a house slopes up...Ch. 5 - Review. A Chinook salmon can swim underwater at...Ch. 5 - Review. A magician pulls a tablecloth from under a...Ch. 5 - A 5.00-kg block is placed on top of a 10.0-kg...Ch. 5 - The system shown in Figure P5.49 has an...Ch. 5 - A black aluminum glider floats on a film of air...Ch. 5 - A young woman buys an inexpensive used car stock...Ch. 5 - Why is the following situation impossible? A book...Ch. 5 - Review. A hockey puck struck by a hockey stick is...Ch. 5 - A 1.00-kg glider on a horizontal air track is...Ch. 5 - A frictionless plane is 10.0 m long and inclined...Ch. 5 - A rope with mass mr is attached to a block with...Ch. 5 - Two blocks of masses m1 and m2, are placed on a...Ch. 5 - On a single, light, vertical cable that does not...Ch. 5 - An inventive child named Nick wants to reach an...Ch. 5 - In the situation described in Problem 41 and...Ch. 5 - In Example 5.7, we pushed on two blocks on a...Ch. 5 - Prob. 5.84APCh. 5 - An object of mass M is held in place by an applied...Ch. 5 - Prob. 5.86APCh. 5 - Objects with masses m, = 10.0 kg and nut = 5.00 kg...Ch. 5 - Consider the three connected objects shown in...Ch. 5 - A crate of weight Fg is pushed by a force P on a...Ch. 5 - A student is asked to measure the acceleration of...Ch. 5 - A flat cushion of mass m is released from rest at...Ch. 5 - In Figure P5.46, the pulleys and pulleys the cord...Ch. 5 - What horizontal force must be applied to a large...Ch. 5 - An 8.40-kg object slides down a fixed,...Ch. 5 - A car accelerates down a hill (Fig. P5.95), going...Ch. 5 - A time-dependent force, F = (8.00i - 4.00/j),...Ch. 5 - The board sandwiched between two other boards in...Ch. 5 - Initially, the system of objects shown in Figure...Ch. 5 - A block of mass 2.20 kg is accelerated across a...Ch. 5 - Why is the following situation impossible? A...Ch. 5 - Review. A block of mass m = 2.00 kg is released...Ch. 5 - In Figure P5.55, the incline has mass M and is...Ch. 5 - A block of mass m = 2.00 kg rests on the left edge...Ch. 5 - A mobile is formed by supporting four metal...
Knowledge Booster
Learn more about
Need a deep-dive on the concept behind this application? Look no further. Learn more about this topic, physics and related others by exploring similar questions and additional content below.Similar questions
- When a body slides down an inclined plane, does the work of friction depend on the body’s initial speed? Answer the same question for a body sliding down a curved surface.arrow_forwardCheck Your Understanding Can Earth’s gravity ever be a constant force for all paths?arrow_forward(a) Calculate the force needed to bring a 800 kg car to rest from a speed of 85.0 km/h in a distance of 130 m (a fairly typical distance for a nonpanic stop). ............N(b) Suppose instead the car hits a concrete abutment at full speed and is brought to a stop in 2.00 m. Calculate the force exerted on the car and compare it with the force found in part (a), i.e. find the ratio of the force in part(b) to the force in part(a)..............(force in part (b) / force in part (a))arrow_forward
- a runaway truck with failed brakes is moving downgrade at 130 km/h just before the driver steers the truck up a frictionless emergency escape ramp with an inclination of u = 15.The truck’s mass is 1.2 = 104 kg. (a) What minimum length L must the ramp have if the truck is to stop (momentarily) along it? (Assume the truck is a particle, and justify that assumption.) Does the minimum length L increase, decrease, or remain the same if (b) the truck’s mass is decreased and (c) its speed is decreased?arrow_forward(a) Calculate the force needed to bring a 900 kg car to rest from a speed of 80.0 km/h in a distance of 125 m (a fairly typical distance for a nonpanic stop).N(b) Suppose instead the car hits a concrete abutment at full speed and is brought to a stop in 2.00 m. Calculate the force exerted on the car and compare it with the force found in part (a), i.e. find the ratio of the force in part(b) to the force in part(a).(force in part (b) / force in part (a))arrow_forward(a) Calculate the force needed to bring a 850 kg car to rest from a speed of 95.0 km/h in a distance of 105 m (a fairly typical distance for a nonpanic stop). N(b) Suppose instead the car hits a concrete abutment at full speed and is brought to a stop in 2.00 m. Calculate the force exerted on the car and compare it with the force found in part (a), i.e. find the ratio of the force in part(b) to the force in part(a). (force in part (b) / force in part (a))arrow_forward
- A 60.0-kg person jumps onto the floor from a height of 3.00 m. If he lands stiffly (with his knee joints compressing by 0.500 cm), calculate the force on the knee joints.arrow_forwardDuring World War 2, a military parachutist fell 0.37km from an airplane without being able to open his chute, but luckily was able to land in snow, suffering only with minor injuries. Assume that his speed at impact was 56 m/s, and his mass, including his gear was 85kg, and that the magnitude of force on him from the snow was at the survivable limit of 1.2 x 10^5 N. What is the magnitude of the impulse on him from the snow? (Answer in one decimal place, no unit) Sample answer: 1.1x10^3 (Enter the 1.1 only) UNIT: kg-m/s Add your answerarrow_forwarda man pushing a crate of mass m=92kg at a speed of v=0.850m/s encounters a rough horizontal surface of length, 0.65m as in figure. if the coeffivient of kinetic friction between the crate and roug surface is 0.358 and he exerts a constant horizontal force of 275N on the crate, find: a) the magnitude and direction of the net force on the crate while it is on the rough surface. b) the net work done on the crate while it is on the rough surface. c) the peed of the crate when it reaches the end of the rough surfacearrow_forward
- During world war 2, a military parachutist fell 0.37km from an airplane without being able to open his chute, but luckily was able to land in snow, suffering only with minor injuries. Assume that his speed at impact was 56m/s, and his mass, including his gear was 85kg, and that the magnitude of force on him from the snow was at the survivable limit of 1.2 x 10^5 N. What is the magnitude of the impulse on him from the snow? (Answer in one decimal place, no unit) sample answer: 1.1 x 10^3 (enter the 1.1 only)arrow_forward(a) Calculate the force needed to bring a 1100 kg car to rest from a speed of 90.0 km/h in a distance of 125 m (a fairly typical distance for a nonpanic stop).(b) Suppose instead the car hits a concrete abutment at full speed and is brought to a stop in 2.00 m. Calculate the force exerted on the car and compare it with the force found in part (a), i.e. find the ratio of the force in part(b) to the force in part(a).arrow_forwardIn February 1955, a paratrooper fell 370 m from an airplane without being able to open his chute but happened to land in snow, suffering only minor injuries. Assume that his speed at impact was 56 m/s (terminal speed), that his mass (including gear) was 61 kg, and that the magnitude of the force on him from the snow was at the survivable limit of 1.3 x 105 N. What are (a) the minimum depth of snow that would have stopped him safely and (b) the magnitude of the impulse on him from the snow? (a) Number Units (b) Number i Unitsarrow_forward
arrow_back_ios
SEE MORE QUESTIONS
arrow_forward_ios
Recommended textbooks for you
- University Physics Volume 1PhysicsISBN:9781938168277Author:William Moebs, Samuel J. Ling, Jeff SannyPublisher:OpenStax - Rice University
University Physics Volume 1
Physics
ISBN:9781938168277
Author:William Moebs, Samuel J. Ling, Jeff Sanny
Publisher:OpenStax - Rice University
Work-Energy Theorem | Physics Animation; Author: EarthPen;https://www.youtube.com/watch?v=GSTW7Mlaoas;License: Standard YouTube License, CC-BY