EBK PHYSICS FOR SCIENTISTS AND ENGINEER
EBK PHYSICS FOR SCIENTISTS AND ENGINEER
9th Edition
ISBN: 8220100663987
Author: Jewett
Publisher: Cengage Learning US
bartleby

Videos

Textbook Question
Book Icon
Chapter 5, Problem 5.98CP

Initially, the system of objects shown in Figure P5.49 is held motionless. The pulley and all surfaces and wheels are frictionless. Let the force F be zero and assume that m1 can move only vertically. At the instant after the system of objects is released, Find (a) the tension T in the string, (b) the acceleration of m2, (c) the acceleration of M, and (d) the acceleration of m1. (Note: The pulley accelerates along with the cart.)

Figure P5.49 Problems 49 and 53

Chapter 5, Problem 5.98CP, Initially, the system of objects shown in Figure P5.49 is held motionless. The pulley and all

(a)

Expert Solution
Check Mark
To determine

The tension in the string.

Answer to Problem 5.98CP

The tension in the string is m2g(m1Mm2M+m1(m2+M)).

Explanation of Solution

Consider the free body diagram given below,

EBK PHYSICS FOR SCIENTISTS AND ENGINEER, Chapter 5, Problem 5.98CP

Figure I

Here, a is the acceleration of hanging block having mass m1, A is the acceleration of large block having mass M and aA is the acceleration of top block having mass m2.

Write the expression for the equilibrium condition for hanging block

    m1gT=m1aT=m1(ga)                                                                         (I)

Here, m1 is the mass of the hanging block, a is the acceleration of the hanging block, g is the acceleration due to gravity and T is the tension of the cord.

Write the expression for the equilibrium condition for top block

    T=m2(aA)a=Tm2+A                                                                                   (II)

Here, m2 is the mass of the top block and A is the acceleration of the top block

Write the expression for the equilibrium condition for large block

    MA=TA=TM                                                                                           (III)

Here, M is the acceleration of the large mass.

Substitute (Tm2+A) for a and TM for A in equation (I) to find T.

    T=m1(g(Tm2+A))=m1(g(Tm2+TM))=m1g(m1Tm2+m1TM)=m1gm1T(M+m2Mm2)

Further, solve for T.

    T=m1gm1T(M+m2Mm2)T+m1T(M+m2Mm2)=m1gT=m2g(m1Mm2M+m1(m2+M))

Conclusion:

Therefore, the tension in the string is m2g(m1Mm2M+m1(m2+M)).

(b)

Expert Solution
Check Mark
To determine

The acceleration of m2.

Answer to Problem 5.98CP

The acceleration of m2 is m1g(M+m2)Mm2+m1(M+m2).

Explanation of Solution

The force applied on the block of mass M is zero initially and the block of mass m2 has acceleration in synchronization with the big block so the net acceleration on the block is a.

Substitute TM for A in equation (II).

    a=Tm2+TM=T(M+m2Mm2)

Substitute m1g(Mm2Mm2+m1(M+m2)) for T in above equation to find a.

    a=(m1g(Mm2Mm2+m1(M+m2)))(M+m2Mm2)=m1g(M+m2)Mm2+m1(M+m2)

Conclusion:

Therefore, the acceleration of m2 is m1g(M+m2)Mm2+m1(M+m2).

(c)

Expert Solution
Check Mark
To determine

The acceleration of M.

Answer to Problem 5.98CP

The acceleration of M is m1m2gm2M+m1(m2+M).

Explanation of Solution

The acceleration of M is A.

Substitute m1g(Mm2Mm2+m1(M+m2)) for T in equation (II).

    A=m1g(Mm2Mm2+m1(M+m2))M=m1m2gm2M+m1(m2+M)

Conclusion:

Therefore, the acceleration of M is m1m2gm2M+m1(m2+M).

(d)

Expert Solution
Check Mark
To determine

The acceleration of m1.

Answer to Problem 5.98CP

The acceleration of m1 is Mm1gMm2+m1(M+m2).

Explanation of Solution

The block of mass m1 moves in vertical direction only but the net acceleration is the difference between the acceleration of the big block of mass M and the acceleration a of m2.

Write the formula to calculate the acceleration of m1

    am1=aA                                                                                   (IV)

Here, am1 is the acceleration of mass m1.

Substitute m1g(Mm2Mm2+m1(M+m2)) for T in equation (II).

    A=m1g(Mm2Mm2+m1(M+m2))M=m1m2gm2M+m1(m2+M)

Substitute (m1g(M+m2)Mm2+m1(M+m2)) for a and m1m2gm2M+m1(m2+M) for A in equation (4) to find the value of aA.

    aA=(m1g(M+m2)Mm2+m1(M+m2))(m1m2gMm2+m1(M+m2))=(Mm1gMm2+m1(M+m2))

Conclusion:

Therefore, the acceleration of m1 is Mm1gMm2+m1(M+m2).

Want to see more full solutions like this?

Subscribe now to access step-by-step solutions to millions of textbook problems written by subject matter experts!
Students have asked these similar questions
Two particles of mass m each are tied at the ends of a light string of length 2a. The whole system is kept on a frictionless horizontal surface with the string held tight so that each mass is at a distance 'a' from the center P (as shown in the figure). Now, the mid-point of the string is pulled vertically upwards with a small but constant force F. As a result, the particles move towards each other on the surface. The magnitude of acceleration, when the separation between them becomes 2x, is m a F (A) 2m Ja? F (В) 2m Ja a F la? -x? F x (C) 2m a (D) 2m EOT 2.
Try again. A 4.6 kg body is at rest on a frictionless horizontal air track when a constant horizontal force F acting in the positive direction of an x axis along the track is applied to the body. A stroboscopic graph of the position of the body as it slides to the right is shown in the figure. The force F is applied to the body at t = 0, and the graph records the position of the body at 0.50 s intervals. How much work is done on the body by the applied force F between t = 0 and t = 1.8 s? 0.5s -1.0 s 1.5s 2.0 s 0.2 0.4 0.6 0.8 x (m) Number To.8 Units the tolerance is +/-2% Click if you would like to Show Work for this question: Open Show Work SHOW HINT LINK TO TEXT LINK TO SAMPLE PROBLEM VIDEO MINI-LECTURE to search 10:33 PM ENG 4/4/2021 ASUS 13) 16 17 1ghome 3 4 R U F G ト
A plastic disc is flicked up a sloping board. It has an initial speed of 1.6 ms ¹, but gradually slows down. The board is inclined at 18° to the horizontal, and when the disc is flicked its centre is 0.3 m from the top of the board, as shown below. The coefficient of sliding friction between the disc and the board is 0.05. Model the disc as a particle, and take the magnitude of the acceleration due to gravity to be g = = 9.8ms ². 0.3 m 18 j In your response to this question, underline vectors to distinguish them from scalar quantities. If the magnitude of a vector is unknown, use the vector letter to represent the magnitude. For example, write the magnitude of a vector A as A. (a) State the three forces acting on the disc while it is sliding up the board, and draw a force diagram to represent them, labelling each force appropriately and indicating the directions of the forces by marking the sizes of suitable angles. (b) Find expressions for the component forms the three forces, in…

Chapter 5 Solutions

EBK PHYSICS FOR SCIENTISTS AND ENGINEER

Ch. 5 - The driver of a speeding truck slams on the brakes...Ch. 5 - An experiment is performed on a puck on a level...Ch. 5 - The manager of a department store is pushing...Ch. 5 - Two objects are connected by a siring that passes...Ch. 5 - An object of mass m is sliding with speed v, at...Ch. 5 - A truck loaded with sand accelerates along a...Ch. 5 - A large crate of mass m is place on the flatbed of...Ch. 5 - If an object is in equilibrium, which of the...Ch. 5 - A crate remains stationary after it has been...Ch. 5 - An object of mass m moves with acceleration a down...Ch. 5 - If you hold a horizontal metal bar several...Ch. 5 - Your hands are wet, and the restroom towel...Ch. 5 - In the motion picture It Happened One Night...Ch. 5 - If a car is traveling due westward with a constant...Ch. 5 - A passenger sitting in the rear of a bus claims...Ch. 5 - A child tosses a ball straight up. She says that...Ch. 5 - A person holds a ball in her hand, (a) Identify...Ch. 5 - A spherical rubber balloon inflated with air is...Ch. 5 - A rubber ball is dropped onto the floor. What...Ch. 5 - Twenty people participate in a tug-of-war. The two...Ch. 5 - Can an object exert a force on itself? Argue for...Ch. 5 - When you push on a box with a 200-N force instead...Ch. 5 - A weight lifter stands on a bathroom scale. He...Ch. 5 - An athlete grips a light rope that passes over a...Ch. 5 - Suppose you are driving a classic car. Why should...Ch. 5 - In Figure CQ5.16, the light, taut, unstretchable...Ch. 5 - Describe two examples in which the force of...Ch. 5 - The mayor of a city reprimands some city employees...Ch. 5 - Give reasons for the answers to each of the...Ch. 5 - Balancing carefully, three boys inch out onto a...Ch. 5 - Identity action-reaction pairs in the following...Ch. 5 - As shown in Figure CQ5.22, student A, a 55-kg...Ch. 5 - Prob. 5.23CQCh. 5 - A certain orthodontist uses a wire brace to align...Ch. 5 - If a man weighs 900 N on the Earth, what would he...Ch. 5 - A 3.00-kg object undergoes an acceleration given...Ch. 5 - A certain orthodontist uses a wire brace to align...Ch. 5 - A toy rocket engine is securely fastened to a...Ch. 5 - The average speed of a nitrogen molecule in air is...Ch. 5 - The distinction between mass and weight was...Ch. 5 - (a) A cat with a mass of 850 kg in moving to the...Ch. 5 - Review. The gravitational force exerted on a...Ch. 5 - Review. The gravitational force exerted on a...Ch. 5 - Review. An electron of mass 9. 11 1031 kg has an...Ch. 5 - Besides the gravitational force, a 2.80-kg object...Ch. 5 - One or more external forces, large enough to be...Ch. 5 - A brick of mass M has been placed on a rubber...Ch. 5 - Two forces, F1=(6.00i4.00j)N and...Ch. 5 - The force exerted by the wind on the sails of a...Ch. 5 - An object of mass m is dropped al t = 0 from the...Ch. 5 - A force F applied to an object of mass m1,...Ch. 5 - Two forces F1 and F2 act on a 5.00-kg object....Ch. 5 - You stand on the seat of a chair and then hop off....Ch. 5 - A 15.0-lb block rests on the floor. (a) What force...Ch. 5 - Review. Three forces acting on an object are given...Ch. 5 - A 1 00-kg car is pulling a 300-kg trailer....Ch. 5 - If a single constant force acts on an object that...Ch. 5 - Review. Figure P5.15 shows a worker poling a boata...Ch. 5 - An iron bolt of mass 65.0 g hangs from a string...Ch. 5 - Figure P5.27 shows the horizontal forces acting on...Ch. 5 - The systems shown in Figure P5.28 are in...Ch. 5 - Assume the three blocks portrayed in Figure P5.29...Ch. 5 - A block slides down a frictionless plane having an...Ch. 5 - The distance between two telephone poles is 50.0...Ch. 5 - A 3.00-kg object is moving in a plane, with its x...Ch. 5 - A bag of cement weighing 325 N hangs in...Ch. 5 - A bag of cement whose weight is Fg hangs in...Ch. 5 - Two people pull as hard as they can on horizontal...Ch. 5 - Figure P5.36 shows loads hanging from the ceiling...Ch. 5 - An object of mass m = 1.00 kg is observed to have...Ch. 5 - A setup similar to the one shown in Figure P5.38...Ch. 5 - A simple accelerometer is constructed inside a car...Ch. 5 - An object of mass m1 = 5.00 kg placed on a...Ch. 5 - Figure P5.41 shows the speed of a persons body as...Ch. 5 - Two objects are connected by a light string that...Ch. 5 - Two blocks, each of mass m = 3.50 kg, are hung...Ch. 5 - Two blocks, each of mass m, are hung from the...Ch. 5 - In the system shown in Figure P5.23, a horizontal...Ch. 5 - An object of mass m1 hangs from a string that...Ch. 5 - A block is given an initial velocity of 5.00 m/s...Ch. 5 - A car is stuck in the mud. A tow truck pulls on...Ch. 5 - Two blocks of mass 3.50 kg and 8.00 kg arc...Ch. 5 - In the Atwood machine discussed in Example 5.9 and...Ch. 5 - In Example 5.8, we investigated the apparent...Ch. 5 - Consider a large truck carrying a heavy load, such...Ch. 5 - Review. A rifle bullet with a mass of 12.0 g...Ch. 5 - Review. A car is traveling at 50.0 mi/h on a...Ch. 5 - A 25.0-kg block is initially at rest oil a...Ch. 5 - Why is the following situation impassible? Your...Ch. 5 - To determine the coefficients of friction between...Ch. 5 - Before 1960m people believed that the maximum...Ch. 5 - To meet a U.S. Postal Service requirement,...Ch. 5 - A woman at an airport is towing her 20.0-kg...Ch. 5 - Review. A 3.00-kg block starts from rest at the...Ch. 5 - The person in Figure P5.30 weighs 170 lb. As seen...Ch. 5 - A 9.00-kg hanging object is connected by a light,...Ch. 5 - Three objects are connected on a table as shown in...Ch. 5 - Two blocks connected by a rope of negligible mass...Ch. 5 - A block of mass 3.00 kg is pushed up against a...Ch. 5 - Review. One side of the roof of a house slopes up...Ch. 5 - Review. A Chinook salmon can swim underwater at...Ch. 5 - Review. A magician pulls a tablecloth from under a...Ch. 5 - A 5.00-kg block is placed on top of a 10.0-kg...Ch. 5 - The system shown in Figure P5.49 has an...Ch. 5 - A black aluminum glider floats on a film of air...Ch. 5 - A young woman buys an inexpensive used car stock...Ch. 5 - Why is the following situation impossible? A book...Ch. 5 - Review. A hockey puck struck by a hockey stick is...Ch. 5 - A 1.00-kg glider on a horizontal air track is...Ch. 5 - A frictionless plane is 10.0 m long and inclined...Ch. 5 - A rope with mass mr is attached to a block with...Ch. 5 - Two blocks of masses m1 and m2, are placed on a...Ch. 5 - On a single, light, vertical cable that does not...Ch. 5 - An inventive child named Nick wants to reach an...Ch. 5 - In the situation described in Problem 41 and...Ch. 5 - In Example 5.7, we pushed on two blocks on a...Ch. 5 - Prob. 5.84APCh. 5 - An object of mass M is held in place by an applied...Ch. 5 - Prob. 5.86APCh. 5 - Objects with masses m, = 10.0 kg and nut = 5.00 kg...Ch. 5 - Consider the three connected objects shown in...Ch. 5 - A crate of weight Fg is pushed by a force P on a...Ch. 5 - A student is asked to measure the acceleration of...Ch. 5 - A flat cushion of mass m is released from rest at...Ch. 5 - In Figure P5.46, the pulleys and pulleys the cord...Ch. 5 - What horizontal force must be applied to a large...Ch. 5 - An 8.40-kg object slides down a fixed,...Ch. 5 - A car accelerates down a hill (Fig. P5.95), going...Ch. 5 - A time-dependent force, F = (8.00i - 4.00/j),...Ch. 5 - The board sandwiched between two other boards in...Ch. 5 - Initially, the system of objects shown in Figure...Ch. 5 - A block of mass 2.20 kg is accelerated across a...Ch. 5 - Why is the following situation impossible? A...Ch. 5 - Review. A block of mass m = 2.00 kg is released...Ch. 5 - In Figure P5.55, the incline has mass M and is...Ch. 5 - A block of mass m = 2.00 kg rests on the left edge...Ch. 5 - A mobile is formed by supporting four metal...
Knowledge Booster
Background pattern image
Physics
Learn more about
Need a deep-dive on the concept behind this application? Look no further. Learn more about this topic, physics and related others by exploring similar questions and additional content below.
Similar questions
SEE MORE QUESTIONS
Recommended textbooks for you
Text book image
Physics for Scientists and Engineers: Foundations...
Physics
ISBN:9781133939146
Author:Katz, Debora M.
Publisher:Cengage Learning
Drawing Free-Body Diagrams With Examples; Author: The Physics Classroom;https://www.youtube.com/watch?v=3rZR7FSSidc;License: Standard Youtube License