
(a)
Interpretation: Enantiomeric excess of the given solution is to be calculated.
Concept introduction: Enantiomeric excess is the excess of major enantiomer over the minor enantiomer. Enantiomeric excess is equivalent to the optical purity. Enantiomeric excess is the fraction of observed rotation of the mixture to specific rotation of the pure enantiomer.

Answer to Problem 5.64P
The enantiomeric excess for the solution with
Explanation of Solution
The specific rotation
The enantiomeric excess is calculated by the formula,
Substitute the values of specific rotation
The enantiomeric excess for the solution is
The enantiomeric excess is calculated by the formula,
Substitute the values of specific rotation
The enantiomeric excess for the solution is
The enantiomeric excess is calculated by the formula,
Substitute the values of specific rotation
The enantiomeric excess for the solution is
The enantiomeric excess for the solution with
(b)
Interpretation: The percent of each enantiomer in the given solution is to be calculated.
Concept introduction: Enantiomeric excess is the excess of major enantiomer over the minor enantiomer. Enantiomeric excess is equivalent to the optical purity. Enantiomeric excess is the fraction of observed rotation of the mixture to specific rotation of the pure enantiomer.

Answer to Problem 5.64P
For the solution with enantiomeric excess
Explanation of Solution
For the solution with enantiomeric excess 30%.
Let A be the major enantiomer and B be the minor enantiomer. The major enantiomer is
Total amount of A is
Hence, the amount of A and B is
For the solution with enantiomeric excess 50%.
Let A be the major enantiomer and B be the minor enantiomer. The major enantiomer is
Total amount of A is
Hence, the amount of A and B is
For the solution with enantiomeric excess 73%.
Let A be the major enantiomer and B be the minor enantiomer. The major enantiomer is
Total amount of A is
Hence, the amount of A and B is
For the solution with enantiomeric excess
(c)
Interpretation: The specific rotation
Concept introduction: Enantiomers are stereoisomers, which are non-superimposable images of each other. They have identical physical and chemical properties in symmetric environment. They rotate the plane-polarized light in equal amounts and in opposite directions.

Answer to Problem 5.64P
The specific rotation
Explanation of Solution
The specific rotation
Enantiomeric excess of the given solution is
(d)
Interpretation: Enantiomeric excess of the given solution is to be calculated.
Concept introduction: Enantiomeric excess is the excess of major enantiomer over the minor enantiomer. Enantiomeric excess is equivalent to the optical purity. Enantiomeric excess is the fraction of observed rotation of the mixture to specific rotation of the pure enantiomer.

Answer to Problem 5.64P
Enantiomeric excess of the given solution is
Explanation of Solution
For the solution containing
The enantiomeric excess of the solution is calculated by the formula,
Substitute the values of percentage of major and minor enantiomers in the above equation.
Hence, the enantiomeric excess of the solution is
Enantiomeric excess of the given solution is
(e)
Interpretation: The
Concept introduction: Enantiomeric excess is the excess of major enantiomer over the minor enantiomer. Enantiomeric excess is equivalent to the optical purity. Enantiomeric excess is the fraction of observed rotation of the mixture to specific rotation of the pure enantiomer.

Answer to Problem 5.64P
The
Explanation of Solution
For the solution containing
The enantiomeric excess of the solution is
The specific rotation
The enantiomeric excess is calculated by the formula,
Substitute the values of specific rotation
Hence, the
The
Want to see more full solutions like this?
Chapter 5 Solutions
Organic Chemistry
- ASP please....arrow_forwardNonearrow_forwardConsider the structure of 1-bromo-2-fluoroethane. Part 1 of 2 Draw the Newman projection for the anti conformation of 1-bromo-2-fluoroethane, viewed down the C1-C2 bond. ✡ ぬ Part 2 of 2 H H F Br H H ☑ Draw the Newman projection for the gauche conformation of 1-bromo-2-fluoroethane, viewed down the C1-C2 bond. H F Br H Harrow_forward
- Please help me answer this question. I don't understand how or where the different reagents will attach and it's mostly due to the wedge bond because I haven't seen a problem like this before. Please provide a detailed explanation and a drawing showing how it can happen and what the final product will look like.arrow_forwardWhich of the following compounds is the most acidic in the gas phase? Group of answer choices H2O SiH4 HBr H2Sarrow_forwardWhich of the following is the most acidic transition metal cation? Group of answer choices Fe3+ Sc3+ Mn4+ Zn2+arrow_forward
- Based on the thermodynamics of acetic acid dissociation discussed in Lecture 2-5, what can you conclude about the standard enthalpy change (ΔHo) of acid dissociation for HCl? Group of answer choices You cannot arrive at any of the other three conclusions It is a positive value It is more negative than −0.4 kJ/mol It equals −0.4 kJ/molarrow_forwardPLEASE HELP URGENT!arrow_forwardDraw the skeletal structure corresponding to the following IUPAC name: 7-isopropyl-3-methyldecanearrow_forward
- ChemistryChemistryISBN:9781305957404Author:Steven S. Zumdahl, Susan A. Zumdahl, Donald J. DeCostePublisher:Cengage LearningChemistryChemistryISBN:9781259911156Author:Raymond Chang Dr., Jason Overby ProfessorPublisher:McGraw-Hill EducationPrinciples of Instrumental AnalysisChemistryISBN:9781305577213Author:Douglas A. Skoog, F. James Holler, Stanley R. CrouchPublisher:Cengage Learning
- Organic ChemistryChemistryISBN:9780078021558Author:Janice Gorzynski Smith Dr.Publisher:McGraw-Hill EducationChemistry: Principles and ReactionsChemistryISBN:9781305079373Author:William L. Masterton, Cecile N. HurleyPublisher:Cengage LearningElementary Principles of Chemical Processes, Bind...ChemistryISBN:9781118431221Author:Richard M. Felder, Ronald W. Rousseau, Lisa G. BullardPublisher:WILEY





