Concept explainers
(a)
Draw free body diagram of each block.
(a)
Answer to Problem 53P
The free body diagram of mass
The free body diagram of mass
Explanation of Solution
The free body diagram is the graphical illustration used to visualize the movements and forces applied on a body.
Let
The free body diagram of mass
The free body diagram of mass
Conclusion:
Therefore, the free body diagram of mass
(b)
The net force on the system of two blocks.
(b)
Answer to Problem 53P
The net force on the system of two blocks is
Explanation of Solution
From the Figure 1, write the expression for net force action on the mass
Here,
From the Figure 2, write the expression for net force action on the mass
Here,
So the net force on the system is the sum of net force on the each block.
Since contact force acting on each mass is equal.
The net force on the system of block is equal to the magnitude of force
Conclusion:
Therefore, the net force on the system of two blocks is
(c)
The net force on the mass
(c)
Answer to Problem 53P
The net force on the mass
Explanation of Solution
From the Figure 1, write the expression for net force action on the mass
The net force on the mass
Conclusion:
Therefore, the net force on the mass
(d)
The net force acting on the
(d)
Answer to Problem 53P
The net force acting on the
Explanation of Solution
From the Figure 2, write the expression for net force action on the mass
The net force acting on the
Conclusion:
Therefore, the net force acting on the
(e)
Newton’s second law in the
(e)
Answer to Problem 53P
Newton’s second law in the
Explanation of Solution
The blocks are pushed to the right, the acceleration on each block is same and the block exerts equal and opposite forces on each other, so these forces have the same magnitude.
Write the expression for Newton’s second law in the
Here,
Write the expression for frictional force.
Here,
Use equation (III) and (IV) in (I).
Use equation (III) and (IV) in (II).
Conclusion:
Therefore, Newton’s second law in the
(f)
Acceleration of the blocks.
(f)
Answer to Problem 53P
Acceleration of the blocks is
Explanation of Solution
Add equation (V), and (VI), and solve for
Conclusion:
Therefore, the acceleration of the blocks is
(g)
The magnitude of contact force
(g)
Answer to Problem 53P
The magnitude of contact force
Explanation of Solution
Solve equation (IV) for
Use equation (VII) in (VIII).
Simplify the equation (IX).
Conclusion:
Therefore, the magnitude of contact force
Want to see more full solutions like this?
Chapter 5 Solutions
Bundle: Principles of Physics: A Calculus-Based Text, 5th + WebAssign Printed Access Card for Serway/Jewett's Principles of Physics: A Calculus-Based Text, 5th Edition, Multi-Term
- Part C Find the height yi from which the rock was launched. Express your answer in meters to three significant figures. Learning Goal: To practice Problem-Solving Strategy 4.1 for projectile motion problems. A rock thrown with speed 12.0 m/s and launch angle 30.0 ∘ (above the horizontal) travels a horizontal distance of d = 19.0 m before hitting the ground. From what height was the rock thrown? Use the value g = 9.800 m/s2 for the free-fall acceleration. PROBLEM-SOLVING STRATEGY 4.1 Projectile motion problems MODEL: Is it reasonable to ignore air resistance? If so, use the projectile motion model. VISUALIZE: Establish a coordinate system with the x-axis horizontal and the y-axis vertical. Define symbols and identify what the problem is trying to find. For a launch at angle θ, the initial velocity components are vix=v0cosθ and viy=v0sinθ. SOLVE: The acceleration is known: ax=0 and ay=−g. Thus, the problem becomes one of…arrow_forwardPhys 25arrow_forwardPhys 22arrow_forward
- Principles of Physics: A Calculus-Based TextPhysicsISBN:9781133104261Author:Raymond A. Serway, John W. JewettPublisher:Cengage LearningPhysics for Scientists and Engineers: Foundations...PhysicsISBN:9781133939146Author:Katz, Debora M.Publisher:Cengage LearningClassical Dynamics of Particles and SystemsPhysicsISBN:9780534408961Author:Stephen T. Thornton, Jerry B. MarionPublisher:Cengage Learning
- University Physics Volume 1PhysicsISBN:9781938168277Author:William Moebs, Samuel J. Ling, Jeff SannyPublisher:OpenStax - Rice UniversityPhysics for Scientists and Engineers with Modern ...PhysicsISBN:9781337553292Author:Raymond A. Serway, John W. JewettPublisher:Cengage LearningPhysics for Scientists and EngineersPhysicsISBN:9781337553278Author:Raymond A. Serway, John W. JewettPublisher:Cengage Learning