![Bundle: Principles of Physics: A Calculus-Based Text, 5th + WebAssign Printed Access Card for Serway/Jewett's Principles of Physics: A Calculus-Based Text, 5th Edition, Multi-Term](https://www.bartleby.com/isbn_cover_images/9781133422013/9781133422013_largeCoverImage.gif)
Concept explainers
Three objects are connected on a table as shown in Figure P5.14. The coefficient of kinetic friction between the block of mass m2 and the table is 0.350. The objects have masses of m1 = 4.00 kg, m2 = 1.00 kg, and m3 = 2.00 kg, and the pulleys are frictionless. (a) Draw a free-body diagram of each object. (b) Determine the acceleration of each object, including its direction. (c) Determine the tensions in the two cords. What If? (d) If the tabletop were smooth, would the tensions increase, decrease, or remain the same? Explain.
Figure P5.14
(a)
![Check Mark](/static/check-mark.png)
Draw free body diagram of the each object.
Answer to Problem 14P
The free body diagram of the mass of block
The free body diagram of the mass of block
The free body diagram of the mass of block
Explanation of Solution
The free body diagram is the graphical illustration used to visualize the movements and forces applied on a body.
Let
The free body diagram of the mass of block
The free body diagram of the mass of block
The free body diagram of the mass of block
Conclusion:
Therefore, the free body diagram of the mass of block
(b)
![Check Mark](/static/check-mark.png)
The magnitude and direction of acceleration of each object.
Answer to Problem 14P
The magnitude of acceleration of each object is
Explanation of Solution
Apply Newton’s second law for in the
Here,
From the Figure 1, write the expression for net force in the
Here,
Substitute,
From the Figure 2, write the expression for net force in the
Since,
Here,
From the Figure 2, write the expression for net force in the
From the Figure 3, write the expression for net force in the
Add equation (III), (IV), and (VI).
Write the expression for normal force for mass
Use,
Conclusion:
Substitute,
Therefore, the magnitude of acceleration of each object is
(c)
![Check Mark](/static/check-mark.png)
The tension in the two cords.
Answer to Problem 14P
Tension in the first code is
Explanation of Solution
Conclusion:
Substitute,
Substitute,
Therefore, tension in the first code is
(d)
![Check Mark](/static/check-mark.png)
Whether the tension increase, decrease, or remain the same if the tabletop were smooth.
Answer to Problem 14P
The tension in the left rope will decreases, and the tension in the right rope will increases.
Explanation of Solution
If the table top is smooth, the friction on the top will disappear. So the acceleration become larger.
From the equation (III),
Conclusion:
Therefore, the tension in the left rope will decreases, and the tension in the right rope will increases.
Want to see more full solutions like this?
Chapter 5 Solutions
Bundle: Principles of Physics: A Calculus-Based Text, 5th + WebAssign Printed Access Card for Serway/Jewett's Principles of Physics: A Calculus-Based Text, 5th Edition, Multi-Term
- Should the results of your experimental Coefficient of Static Friction for the Wooden Block for the wooden block (Data Table 1) and the wooden block with the added mass (Data Table 2) be similar? Explain why or why not. Determine whether the results of the experiment are within a reasonable experimental error (< 10%) by calculating the % difference. Please help with showing how to calculate and with explaination, I'm not sure. Thanks!arrow_forwardNo chatgpt pls will upvote Alreadyarrow_forwardPlease solve and answer the question correctly please. Thank you!!arrow_forward
- No chatgpt pls will upvotearrow_forwardUniform Circular motion. 1. Mini Lecture 2. Let the position of a particle be given by: (t) = Rcos (wt)i + Rsin (wt)j 3. Calculate the expression for the velocity vector and show that the velocity vector is tangential to the circumference of the circle. 4. Calculate the expression for the acceleration vector and show that the acceleration vector points radially inward. 5. Calculate the magnitude of the velocity and magnitude of the acceleration, and therefore show that v2 a = Rarrow_forward4. A ball is thrown vertically up, its speed. slowing under the influence of gravity. Suppose (A) we film this motion and play the tape backward (so the tape begins with the ball at its highest point and ends with it reaching the point from which it was released), and (B) we observe the motion of the ball from a frame of reference moving up at the initial speed of the ball. The ball has a downward acceleration g in: a. A and B b. Only A c. Only B d. Neither A nor Barrow_forward
- 2. Consider a 2.4 m long propeller that operated at a constant 350 rpm. Find the acceleration of a particle at the tip of the propeller.arrow_forward2. A football is kicked at an angle 37.0° above the horizontal with a velocity of 20.0 m/s, as Calculate (a) the maximum height, (b) the time of travel before the football hits the ground, and (c) how far away it hits the ground. Assume the ball leaves the foot at ground level, and ignore air resistance, wind, and rotation of the ball.arrow_forwardPlease don't use Chatgpt will upvote and give handwritten solutionarrow_forward
- Principles of Physics: A Calculus-Based TextPhysicsISBN:9781133104261Author:Raymond A. Serway, John W. JewettPublisher:Cengage LearningPhysics for Scientists and Engineers: Foundations...PhysicsISBN:9781133939146Author:Katz, Debora M.Publisher:Cengage LearningCollege PhysicsPhysicsISBN:9781305952300Author:Raymond A. Serway, Chris VuillePublisher:Cengage Learning
- College PhysicsPhysicsISBN:9781285737027Author:Raymond A. Serway, Chris VuillePublisher:Cengage LearningCollege PhysicsPhysicsISBN:9781938168000Author:Paul Peter Urone, Roger HinrichsPublisher:OpenStax CollegePhysics for Scientists and Engineers, Technology ...PhysicsISBN:9781305116399Author:Raymond A. Serway, John W. JewettPublisher:Cengage Learning
![Text book image](https://www.bartleby.com/isbn_cover_images/9781133104261/9781133104261_smallCoverImage.gif)
![Text book image](https://www.bartleby.com/isbn_cover_images/9781133939146/9781133939146_smallCoverImage.gif)
![Text book image](https://www.bartleby.com/isbn_cover_images/9781305952300/9781305952300_smallCoverImage.gif)
![Text book image](https://www.bartleby.com/isbn_cover_images/9781285737027/9781285737027_smallCoverImage.gif)
![Text book image](https://www.bartleby.com/isbn_cover_images/9781938168000/9781938168000_smallCoverImage.gif)
![Text book image](https://www.bartleby.com/isbn_cover_images/9781305116399/9781305116399_smallCoverImage.gif)