
Concept explainers
(a)
Interpretation:
Considering the setup given, the container with the greater density should be identified. Should be measured.
Concept Introduction:
Using the
(a)

Answer to Problem 5.33QP
The container with
Explanation of Solution
From the ideal gas equation and density formula,
Both the density and pressure are related.
From the above equation we can say that, pressure and density are directly proportional to each other. So the molecules with the highest molecular mass will have higher density i.e., O2 gas with
The container with the greater density was identified.
(b)
Interpretation:
Considering the setup given, the container with the greater RMS speed should be identified.
Concept Introduction:
Root mean square value:
Where,
(b)

Answer to Problem 5.33QP
The
Explanation of Solution
From the root mean square value we can say that the molecule with less molar mass
The change in mole fraction of O2 at lower temperature in the flask was explained.
(c)
Interpretation:
Considering the setup given, the container with the greater number of atoms should be identified.
Concept Introduction:
Where,
n = no. of molecules (in moles)
V = Volume
k = constant
(c)

Answer to Problem 5.33QP
Explanation of Solution
Both the containers has 1.0 moles of gas, so from the Avogadro law we can say that they have equal number of atoms irrespective of their molar mass.
Considering the setup given, the container with the greater number of atoms was identified.
(d)
Interpretation:
Considering the setup given, the change in the pressure of the container when the closed valve is opened should be identified.
Concept Introduction:
Gas pressure:
Pressure or Stress is the force applied perpendicular to the surface of an object per unit area.
SI derived unit of pressure is Pascal (Pa).
(d)

Answer to Problem 5.33QP
Explanation of Solution
The pressure in the container remains same. Since both the container starts with the same pressure from their ends. so the total pressure remains same.
Considering the setup given, the change in the pressure of the container when the closed valve is opened was identified.
(e)
Interpretation:
Considering the given setup, the H2 fraction of pressure when
Concept Introduction:
Gas pressure:
Pressure or Stress is the force applied perpendicular to the surface of an object per unit area.
SI derived unit of pressure is Pascal (Pa).
(e)

Answer to Problem 5.33QP
The fraction of total pressure due to H2 gas can be ¼
Explanation of Solution
When the total amount of the gas contains in a container changes from 2.0 mol to 4.0 mol. the fraction of gas present in the container will also change, i.e, when two equal amount gases were present they are 50% each in the container. When 2.0 mol of an argon gas introduced through the valves, the percentage of H2 gas now changes 25 % that means ¼ of the container.
Total volume before the addition of Argon gas = 2.0 mol
Percentage of H2 gas = 50 %( ½ fraction of the container)
Total volume after the addition of Argon gas = 4.0 mol
Percentage of H2 gas = 25 %( ¼ fraction of the container)
Considering the given setup, the H2 fraction of pressure when
Want to see more full solutions like this?
Chapter 5 Solutions
Student Solutions Manual for Ebbing/Gammon's General Chemistry, 11th
- curved arrows are used to illustrate the flow of electrons. using the provided starting and product structures, draw the cured electron-pushing arrows for thw following reaction or mechanistic steps. be sure to account for all bond-breaking and bond making stepsarrow_forwardUsing the graphs could you help me explain the answers. I assumed that both graphs are proportional to the inverse of time, I think. Could you please help me.arrow_forwardSynthesis of Dibenzalacetone [References] Draw structures for the carbonyl electrophile and enolate nucleophile that react to give the enone below. Question 1 1 pt Question 2 1 pt Question 3 1 pt H Question 4 1 pt Question 5 1 pt Question 6 1 pt Question 7 1pt Question 8 1 pt Progress: 7/8 items Que Feb 24 at You do not have to consider stereochemistry. . Draw the enolate ion in its carbanion form. • Draw one structure per sketcher. Add additional sketchers using the drop-down menu in the bottom right corner. ⚫ Separate multiple reactants using the + sign from the drop-down menu. ? 4arrow_forward
- Shown below is the mechanism presented for the formation of biasplatin in reference 1 from the Background and Experiment document. The amounts used of each reactant are shown. Either draw or describe a better alternative to this mechanism. (Note that the first step represents two steps combined and the proton loss is not even shown; fixing these is not the desired improvement.) (Hints: The first step is correct, the second step is not; and the amount of the anhydride is in large excess to serve a purpose.)arrow_forwardHi I need help on the question provided in the image.arrow_forwardDraw a reasonable mechanism for the following reaction:arrow_forward
- Draw the mechanism for the following reaction: CH3 CH3 Et-OH Et Edit the reaction by drawing all steps in the appropriate boxes and connecting them with reaction arrows. Add charges where needed. Electron-flow arrows should start on the electron(s) of an atom or a bond and should end on an atom, bond, or location where a new bond should be created. H± EXP. L CONT. י Α [1] осн CH3 а CH3 :Ö Et H 0 N о S 0 Br Et-ÖH | P LL Farrow_forward20.00 mL of 0.150 M NaOH is titrated with 37.75 mL of HCl. What is the molarity of the HCl?arrow_forward20.00 mL of 0.025 M HCl is titrated with 0.035 M KOH. What volume of KOH is needed?arrow_forward
- 20.00 mL of 0.150 M NaOH is titrated with 37.75 mL of HCl. What is the molarity of the HCl?arrow_forward20.00 mL of 0.025 M HCl is titrated with 0.035 M KOH. What volume of KOH is needed?arrow_forward20.00 mL of 0.150 M HCl is titrated with 37.75 mL of NaOH. What is the molarity of the NaOH?arrow_forward
- Chemistry: Principles and ReactionsChemistryISBN:9781305079373Author:William L. Masterton, Cecile N. HurleyPublisher:Cengage LearningChemistry: Principles and PracticeChemistryISBN:9780534420123Author:Daniel L. Reger, Scott R. Goode, David W. Ball, Edward MercerPublisher:Cengage LearningChemistry & Chemical ReactivityChemistryISBN:9781337399074Author:John C. Kotz, Paul M. Treichel, John Townsend, David TreichelPublisher:Cengage Learning
- Chemistry & Chemical ReactivityChemistryISBN:9781133949640Author:John C. Kotz, Paul M. Treichel, John Townsend, David TreichelPublisher:Cengage LearningGeneral Chemistry - Standalone book (MindTap Cour...ChemistryISBN:9781305580343Author:Steven D. Gammon, Ebbing, Darrell Ebbing, Steven D., Darrell; Gammon, Darrell Ebbing; Steven D. Gammon, Darrell D.; Gammon, Ebbing; Steven D. Gammon; DarrellPublisher:Cengage LearningChemistry for Engineering StudentsChemistryISBN:9781337398909Author:Lawrence S. Brown, Tom HolmePublisher:Cengage Learning





