Concept explainers
A 3.00-L flask containing 2.0 mol of O2 and 1.0 mol of N2 is in a room that is at 22.0°C.
- a How much (what fraction) of the total pressure in the flask is due to the N2?
- b The flask is cooled and the pressure drops. What happens, if anything, to the mole fraction of the O2 at the lower temperature?
- c L of liquid water is introduced into the flask containing both gases. The pressure is then measured about 45 minutes later. Would you expect the measured pressure to be higher or lower?
- d Given the information in this problem and the conditions in part c, would it be possible to calculate the pressure in the flask after the introduction of the water? If it is not possible with the given information, what further information would you need to accomplish this task?
(a)
Interpretation:
The amount of pressure due to N2 gas present in a 3.00 L flask containing 2.0 mol of O2 and 1.0 mol of N2 should be measured.
Concept Introduction:
Ideal gas equation:
At a constant temperature (K) and pressure (P), the volume (v) occupied by the no of moles of any gas is known as ideal gas equation.
Ideal gas equation:
And the SI units are
Answer to Problem 5.32QP
The total pressure fraction due to N2 gas is
Explanation of Solution
The flask contains 1.0 mol of N2 gas out of 3.0 mol container, so the fraction of N2 gas in the container is
The amount of pressure due to N2 gas present in a 3.00 L flask containing 2.0 mol of O2 and 1.0 mol of N2 was measured.
(b)
Interpretation:
The change in mole fraction of O2 at lower temperature in the flask should be explained
Concept Introduction:
Ideal gas equation:
At a constant temperature (K) and pressure (P), the volume (v) occupied by the no of moles of any gas is known as ideal gas equation.
Ideal gas equation:
And the SI units are
Answer to Problem 5.32QP
There will be no change in mole fraction of
Explanation of Solution
From the ideal gas equation,
The change in mole fraction of O2 at lower temperature in the flask was explained.
(c)
Interpretation:
The change in pressure when the 1.0 L liquid water added to the flask containing two gases should be explained.
Concept Introduction:
Ideal gas equation:
At a constant temperature (K) and pressure (P), the volume (v) occupied by the no of moles of any gas is known as ideal gas equation.
Ideal gas equation:
And the SI units are
Answer to Problem 5.32QP
Explanation of Solution
According to ideal gas equation, the pressure in the flask is increases for two reasons
- 1. When the water enters the flask occupies some spaces occupied by the gas earlier making gas molecules increase in pressure.
- 2. When the liquid water enters the flask it would evaporate after a time, and evaporate water would contribute the increase in pressure.
The change in pressure when the 1.0 L liquid water added to the flask containing two gases was explained.
(d)
Interpretation:
Using the parameters given in the part c is it possible to calculate the change in pressure should be explained.
Concept Introduction:
Ideal gas equation:
At a constant temperature (K) and pressure (P), the volume (v) occupied by the no of moles of any gas is known as ideal gas equation.
Ideal gas equation:
And the SI units are
Answer to Problem 5.32QP
Explanation of Solution
For calculating pressure from ideal gas equation, we have to know the volume and temperature of the given gas. As the volume of the flask is fixed and temperature is lowered and it can be measured and the gas constant “R’’ value we knew it is a constant and the value of water vapor pressure should be known so that we can calculate the pressure in the flask.
The change in pressure when the 1.0 L liquid water added to the flask containing two gases was explained.
Want to see more full solutions like this?
Chapter 5 Solutions
OWLv2 with Student Solutions Manual eBook for Ebbing/Gammon's General Chemistry, 11th Edition, [Instant Access], 4 terms (24 months)
Additional Science Textbook Solutions
Fundamentals Of Thermodynamics
Fundamentals of Physics Extended
Genetics: Analysis and Principles
Microbiology: An Introduction
Organic Chemistry
Chemistry: Structure and Properties (2nd Edition)
- In three dimensions, explain the concept of the velocity distribution function of particles within the kinetic theory of gases.arrow_forwardIn the kinetic theory of gases, explain the concept of the velocity distribution function of particles in space.arrow_forwardIn the kinetic theory of gases, explain the concept of the velocity distribution function of particles.arrow_forward
- Hi!! Please provide a solution that is handwritten. this is an inorganic chemistry question please answer accordindly!! its just one question with parts JUST ONE QUESTION with its parts spread out till part (g), please answer EACH part till the end and dont just provide wordy explanations wherever asked for structures, please DRAW DRAW them on a paper and post clearly!! answer the full question with all calculations step by step EACH PART CLEARLY please thanks!! im reposting this please solve all parts and drawit not just word explanations!!arrow_forwardHi!! Please provide a solution that is handwritten. this is an inorganic chemistry question please answer accordindly!! its just one question with parts JUST ONE QUESTION, please answer EACH part PART A AND PART B!!!!! till the end and dont just provide wordy explanations wherever asked for structures, please DRAW DRAW them on a paper and post clearly!! answer the full question with all details EACH PART CLEARLY please thanks!! im reposting this please solve all parts and drawit not just word explanations!!arrow_forwardHi!! Please provide a solution that is handwritten. this is an inorganic chemistry question please answer accordindly!! its just one question with parts JUST ONE QUESTION, please answer EACH part till the end and dont just provide wordy explanations wherever asked for structures, please DRAW DRAW them on a paper and post clearly!! answer the full question with all details EACH PART CLEARLY please thanks!! im reposting this please solve all parts and drawit not just word explanations!!arrow_forward
- 8b. Explain, using key intermediates, why the above two products are formed instead of the 1,2-and 1,4- products shown in the reaction below. CIarrow_forward(5pts) Provide the complete arrow pushing mechanism for the chemical transformation depicted below Use proper curved arrow notation that explicitly illustrates all bonds being broken, and all bonds formed in the transformation. Also, be sure to include all lone pairs and formal charges on all atoms involved in the flow of electrons. CH3O H I I CH3O-H H I ① Harrow_forward6. Draw the products) formed from the following reactions. (a) HIarrow_forward
- Don't used Ai solutionarrow_forwardPlease correct answer and don't used hand raitingarrow_forward1. For each of the following, predict the products of the reaction by writing a balance net ionic equation for each. If no reaction is expected, then write NO REACTION. (a) AgNO3 (aq) is mixed with Na2CO3 (aq). (b) An aqueous solution of ammonium sulfate is added to an aqueous solution of calcium chloride. (c) RbI (aq) is added to Pb(NO3)2 (aq). (d) NaCl (s) is added to AgNO3 (aq).arrow_forward
- Chemistry for Engineering StudentsChemistryISBN:9781337398909Author:Lawrence S. Brown, Tom HolmePublisher:Cengage LearningChemistry: An Atoms First ApproachChemistryISBN:9781305079243Author:Steven S. Zumdahl, Susan A. ZumdahlPublisher:Cengage LearningChemistry: The Molecular ScienceChemistryISBN:9781285199047Author:John W. Moore, Conrad L. StanitskiPublisher:Cengage Learning
- Chemistry: Principles and ReactionsChemistryISBN:9781305079373Author:William L. Masterton, Cecile N. HurleyPublisher:Cengage LearningChemistry: Matter and ChangeChemistryISBN:9780078746376Author:Dinah Zike, Laurel Dingrando, Nicholas Hainen, Cheryl WistromPublisher:Glencoe/McGraw-Hill School Pub CoChemistryChemistryISBN:9781305957404Author:Steven S. Zumdahl, Susan A. Zumdahl, Donald J. DeCostePublisher:Cengage Learning