![OWLv2 with Student Solutions Manual eBook for Ebbing/Gammon's General Chemistry, 11th Edition, [Instant Access], 4 terms (24 months)](https://www.bartleby.com/isbn_cover_images/9781305864900/9781305864900_largeCoverImage.jpg)
Concept explainers
A 3.00-L flask containing 2.0 mol of O2 and 1.0 mol of N2 is in a room that is at 22.0°C.
- a How much (what fraction) of the total pressure in the flask is due to the N2?
- b The flask is cooled and the pressure drops. What happens, if anything, to the mole fraction of the O2 at the lower temperature?
- c L of liquid water is introduced into the flask containing both gases. The pressure is then measured about 45 minutes later. Would you expect the measured pressure to be higher or lower?
- d Given the information in this problem and the conditions in part c, would it be possible to calculate the pressure in the flask after the introduction of the water? If it is not possible with the given information, what further information would you need to accomplish this task?
(a)
![Check Mark](/static/check-mark.png)
Interpretation:
The amount of pressure due to N2 gas present in a 3.00 L flask containing 2.0 mol of O2 and 1.0 mol of N2 should be measured.
Concept Introduction:
Ideal gas equation:
At a constant temperature (K) and pressure (P), the volume (v) occupied by the no of moles of any gas is known as ideal gas equation.
Ideal gas equation:
And the SI units are
Answer to Problem 5.32QP
The total pressure fraction due to N2 gas is
Explanation of Solution
The flask contains 1.0 mol of N2 gas out of 3.0 mol container, so the fraction of N2 gas in the container is
The amount of pressure due to N2 gas present in a 3.00 L flask containing 2.0 mol of O2 and 1.0 mol of N2 was measured.
(b)
![Check Mark](/static/check-mark.png)
Interpretation:
The change in mole fraction of O2 at lower temperature in the flask should be explained
Concept Introduction:
Ideal gas equation:
At a constant temperature (K) and pressure (P), the volume (v) occupied by the no of moles of any gas is known as ideal gas equation.
Ideal gas equation:
And the SI units are
Answer to Problem 5.32QP
There will be no change in mole fraction of
Explanation of Solution
From the ideal gas equation,
The change in mole fraction of O2 at lower temperature in the flask was explained.
(c)
![Check Mark](/static/check-mark.png)
Interpretation:
The change in pressure when the 1.0 L liquid water added to the flask containing two gases should be explained.
Concept Introduction:
Ideal gas equation:
At a constant temperature (K) and pressure (P), the volume (v) occupied by the no of moles of any gas is known as ideal gas equation.
Ideal gas equation:
And the SI units are
Answer to Problem 5.32QP
Explanation of Solution
According to ideal gas equation, the pressure in the flask is increases for two reasons
- 1. When the water enters the flask occupies some spaces occupied by the gas earlier making gas molecules increase in pressure.
- 2. When the liquid water enters the flask it would evaporate after a time, and evaporate water would contribute the increase in pressure.
The change in pressure when the 1.0 L liquid water added to the flask containing two gases was explained.
(d)
![Check Mark](/static/check-mark.png)
Interpretation:
Using the parameters given in the part c is it possible to calculate the change in pressure should be explained.
Concept Introduction:
Ideal gas equation:
At a constant temperature (K) and pressure (P), the volume (v) occupied by the no of moles of any gas is known as ideal gas equation.
Ideal gas equation:
And the SI units are
Answer to Problem 5.32QP
Explanation of Solution
For calculating pressure from ideal gas equation, we have to know the volume and temperature of the given gas. As the volume of the flask is fixed and temperature is lowered and it can be measured and the gas constant “R’’ value we knew it is a constant and the value of water vapor pressure should be known so that we can calculate the pressure in the flask.
The change in pressure when the 1.0 L liquid water added to the flask containing two gases was explained.
Want to see more full solutions like this?
Chapter 5 Solutions
OWLv2 with Student Solutions Manual eBook for Ebbing/Gammon's General Chemistry, 11th Edition, [Instant Access], 4 terms (24 months)
Additional Science Textbook Solutions
Fundamentals Of Thermodynamics
Fundamentals of Physics Extended
Genetics: Analysis and Principles
Microbiology: An Introduction
Organic Chemistry
Chemistry: Structure and Properties (2nd Edition)
- For each molecule, assign each stereocenter as R or S. Circle the meso compounds. Label each compound as chiral or achiral.arrow_forwardBlackboard app.aktiv.com X Organic Chemistry II Lecture (mx Aktiv Learning App Curved arrows are used to illustrate the flow of electrons. Using the provided starting and product structures, draw the curved electron-pushing arrows for the following reaction or mechanistic step(s). Be sure to account for all bond-breaking and bond-making steps. Problem 25 of 35 Select to Edit Arrows CH3CH2OK, CH3CH2OH L Gemini M 31 0:0 :0: 5x Undo Reset Done :0: Harrow_forwardI have some reactions here for which I need to predict the products. Can you help me solve them and rewrite the equations, as well as identify the type of reaction? Please explain it to me.I have some reactions here for which I need to predict the products. Can you help me solve them and rewrite the equations, as well as identify the type of reaction? Please explain it to marrow_forward
- Draw the major product of this reaction. Ignore inorganic byproducts. Problem 17 of 35 1. CH3CH2Li O H 2. Neutralizing work-up @ Atoms, Bonds and Rings Draw or tap a new boarrow_forwardWill this convert the C=O to an alcohol? Or does its participation in the carboxy group prevent that from happening?arrow_forwardI have some reactions here for which I need to predict the products. Can you help me solve them and rewrite the equations, as well as identify the type of reaction? Please explain it to me.I have some reactions here for which I need to predict the products. Can you help me solve them and rewrite the equations, as well as identify the type of reaction? Please explain it to marrow_forward
- Help me i dont know how to do itarrow_forwardCan you explain how to draw a molecular orbital diagram for the given molecule? It is quite difficult to understand. Additionally, could you provide a clearer illustration? Furthermore, please explain how to draw molecular orbital diagrams for any other given molecule or compound as well.arrow_forwardCurved arrows are used to illustrate the flow of electrons. Using the provided starting and product structures, draw the curved electron-pushing arrows for the following reaction or mechanistic step(s). Be sure to account for all bond-breaking and bond-making steps. Prob 10: Select to Add Arrows THEarrow_forward
- Chemistry for Engineering StudentsChemistryISBN:9781337398909Author:Lawrence S. Brown, Tom HolmePublisher:Cengage LearningChemistry: An Atoms First ApproachChemistryISBN:9781305079243Author:Steven S. Zumdahl, Susan A. ZumdahlPublisher:Cengage LearningChemistry: The Molecular ScienceChemistryISBN:9781285199047Author:John W. Moore, Conrad L. StanitskiPublisher:Cengage Learning
- Chemistry: Principles and ReactionsChemistryISBN:9781305079373Author:William L. Masterton, Cecile N. HurleyPublisher:Cengage LearningChemistry: Matter and ChangeChemistryISBN:9780078746376Author:Dinah Zike, Laurel Dingrando, Nicholas Hainen, Cheryl WistromPublisher:Glencoe/McGraw-Hill School Pub CoChemistryChemistryISBN:9781305957404Author:Steven S. Zumdahl, Susan A. Zumdahl, Donald J. DeCostePublisher:Cengage Learning
![Text book image](https://www.bartleby.com/isbn_cover_images/9781337398909/9781337398909_smallCoverImage.gif)
![Text book image](https://www.bartleby.com/isbn_cover_images/9781305079243/9781305079243_smallCoverImage.gif)
![Text book image](https://www.bartleby.com/isbn_cover_images/9781285199047/9781285199047_smallCoverImage.gif)
![Text book image](https://www.bartleby.com/isbn_cover_images/9781305079373/9781305079373_smallCoverImage.gif)
![Text book image](https://www.bartleby.com/isbn_cover_images/9781305957404/9781305957404_smallCoverImage.gif)