Introduction to Chemical Engineering Thermodynamics
Introduction to Chemical Engineering Thermodynamics
8th Edition
ISBN: 9781259696527
Author: J.M. Smith Termodinamica en ingenieria quimica, Hendrick C Van Ness, Michael Abbott, Mark Swihart
Publisher: McGraw-Hill Education
Question
Book Icon
Chapter 5, Problem 5.27P

(a)

Interpretation Introduction

Interpretation :

Calculate entropy change of the gas in a steady state flow process at approximately atmospheric pressure.

Concept Introduction :

The general equation for the steady state flow entropy change as the function of temperature and pressure is defined as:

  dS=CPdTT(VT)PdPat constant pressure

  ΔS=RT1T2CPRdTT......(1)

(a)

Expert Solution
Check Mark

Answer to Problem 5.27P

  ΔS=548.12JK

Explanation of Solution

Given information:

It is given that

  n=10mol of SO2

  T0=200C+273.15=473.15K

  T=1100C+273.15=1373.15K

From equation (1)

  ΔS=RT1T2CPRdTT

Where

  T0TΔCPRdTT=[A+[BT0+(CT02+Dτ2T02)(τ+12)](τ1lnτ)]lnτ......(2)

And

  τ=TT0

The Values of above constants for SO2 in equation (2) are given in appendix C table C.1 and noted down below:

  iA103B106C105DSO25.6990.80101.015

Hence

  τ=TT0τ=1373.15K473.15K=2.902

and

  T0TΔCPRdTT=[A+[BT0+(CT02+D τ 2 T 0 2)(τ+12)](τ1lnτ)]lnτT0TΔCPRdTT=[5.699+[0.801×103×473.15+(0×473.152+1.015× 105 2.9022× 473.152)(2.902+12)](2.9021ln2.902)]ln2.902T0TΔCPRdTT=6.59279

Therefore, entropy change is

  ΔS=RT1T2CPRdTTΔS=8.314Jmol K×6.59279ΔS=54.8124Jmol K

For n=10mol of SO2

  ΔS=54.8124Jmol K×10molΔS=548.12JK

(b)

Interpretation Introduction

Interpretation :

Calculate entropy change of the gas in a steady state flow process at approximately atmospheric pressure.

Concept Introduction :

The general equation for the steady state flow entropy change as the function of temperature and pressure is defined as:

  dS=CPdTT(VT)PdPat constant pressure

  ΔS=RT1T2CPRdTT......(1)

(b)

Expert Solution
Check Mark

Answer to Problem 5.27P

  ΔS=2018.79JK

Explanation of Solution

Given information:

It is given that

  n=12mol of Propane

  T0=250C+273.15=523.15K

  T=1200C+273.15=1473.15K

From equation (1)

  ΔS=RT1T2CPRdTT

Where

  T0TΔCPRdTT=[A+[BT0+(CT02+Dτ2T02)(τ+12)](τ1lnτ)]lnτ......(2)

And

  τ=TT0

The Values of above constants for Propane in equation (2) are given in appendix C table C.1 and noted down below:

  iA103B106C105DPropane1.21328.7858.8240

Hence

  τ=TT0τ=1473.15K523.15K=2.816

and

  T0TΔCPRdTT=[A+[BT0+(CT02+D τ 2 T 0 2)(τ+12)](τ1lnτ)]lnτT0TΔCPRdTT=[1.213+[28.785×103×523.15+(8.824×106×523.152)(2.816+12)](2.8161ln2.816)]ln2.816T0TΔCPRdTT=20.2349

Therefore, entropy change is

  ΔS=RT1T2CPRdTTΔS=8.314Jmol K×20.2349ΔS=168.23Jmol K

For n=12mol of Propane

  ΔS=168.23Jmol K×12molΔS=2018.79JK

(c)

Interpretation Introduction

Interpretation :

Calculate entropy change of the gas in a steady state flow process at approximately atmospheric pressure.

Concept Introduction :

The general equation for the steady state flow entropy change as the function of temperature and pressure is defined as:

  dS=CPdTT(VT)PdPat constant pressure

  ΔS=RT1T2CPRdTT......(1)

(c)

Expert Solution
Check Mark

Answer to Problem 5.27P

  ΔS=73168.8JK

Explanation of Solution

Given information:

It is given that

  n=20kg of methane

  T0=100C+273.15=373.15K

  T=800C+273.15=1073.15K

  M=16.043gmmol of methane

From equation (1)

  ΔS=RT1T2CPRdTT

Where

  T0TΔCPRdTT=[A+[BT0+(CT02+Dτ2T02)(τ+12)](τ1lnτ)]lnτ......(2)

And

  τ=TT0

The Values of above constants for methane in equation (2) are given in appendix C table C.1 and noted down below:

  iA103B106C105DMathane1.7029.0812.1640

Hence

  τ=TT0τ=1073.15K373.15K=2.876

and

  T0TΔCPRdTT=[A+[BT0+(CT02+D τ 2 T 0 2)(τ+12)](τ1lnτ)]lnτT0TΔCPRdTT=[1.702+[9.081×103×373.15+(2.164×106×373.152)(2.876+12)](2.8761ln2.876)]ln2.876T0TΔCPRdTT=7.05946

Therefore, entropy change is

  ΔS=RT1T2CPRdTTΔS=8.314Jmol K×7.05946ΔS=58.69Jmol K

For n=20kg of methane and M=16.043gmmol of methane

  ΔS=58.69Jmol K×20kg of methane×1000gm1kg×mol16.043gmΔS=73168.8JK

(d)

Interpretation Introduction

Interpretation :

Calculate entropy change of the gas in a steady state flow process at approximately atmospheric pressure.

Concept Introduction :

The general equation for the steady state flow entropy change as the function of temperature and pressure is defined as:

  dS=CPdTT(VT)PdPat constant pressure

  ΔS=RT1T2CPRdTT......(1)

(d)

Expert Solution
Check Mark

Answer to Problem 5.27P

  ΔS=2388.95JK

Explanation of Solution

Given information:

It is given that

  n=10 mol of n-butane

  T0=150C+273.15=423.15K

  T=1150C+273.15=1423.15K

From equation (1)

  ΔS=RT1T2CPRdTT

Where

  T0TΔCPRdTT=[A+[BT0+(CT02+Dτ2T02)(τ+12)](τ1lnτ)]lnτ......(2)

And

  τ=TT0

The Values of above constants for n-butane in equation (2) are given in appendix C table C.1 and noted down below:

  iA103B106C105DnButane1.93536.91511.4020

Hence

  τ=TT0τ=1423.15K423.15K=3.363

and

  T0TΔCPRdTT=[A+[BT0+(CT02+D τ 2 T 0 2)(τ+12)](τ1lnτ)]lnτT0TΔCPRdTT=[1.935+[36.915×103×423.15+(11.402×106×423.152)(3.363+12)](3.3631ln3.363)]ln3.363T0TΔCPRdTT=28.7341

Therefore, entropy change is

  ΔS=RT1T2CPRdTTΔS=8.314Jmol K×28.7341ΔS=238.895Jmol K

For n=10 mol of n-butane

  ΔS=238.895Jmol K×10 mol of n-butaneΔS=2388.95JK

(e)

Interpretation Introduction

Interpretation :

Calculate entropy change of the gas in a steady state flow process at approximately atmospheric pressure.

Concept Introduction :

The general equation for the steady state flow entropy change as the function of temperature and pressure is defined as:

  dS=CPdTT(VT)PdPat constant pressure

  ΔS=RT1T2CPRdTT......(1)

(e)

Expert Solution
Check Mark

Answer to Problem 5.27P

  ΔS=1562580.153JK

Explanation of Solution

Given information:

It is given that

  n=1000kg of air

  T0=25C+273.15=298.15K

  T=1000C+273.15=1273.15K

  M=28.851gmmol of air

From equation (1)

  ΔS=RT1T2CPRdTT

Where

  T0TΔCPRdTT=[A+[BT0+(CT02+Dτ2T02)(τ+12)](τ1lnτ)]lnτ......(2)

And

  τ=TT0

The Values of above constants for air in equation (2) are given in appendix C table C.1 and noted down below:

  iA103B106C105Dair3.3550.57500.016

Hence

  τ=TT0τ=1273.15K298.15K=4.2702

and

  T0TΔCPRdTT=[A+[BT0+(CT02+D τ 2 T 0 2)(τ+12)](τ1lnτ)]lnτT0TΔCPRdTT=[3.355+[0.575×103×298.15+(0+0.016× 105 4.27022× 298.152)(4.2702+12)](4.27021ln4.2702)]ln4.2702T0TΔCPRdTT=5.42245

Therefore, entropy change is

  ΔS=RT1T2CPRdTTΔS=8.314Jmol K×5.42245ΔS=45.082Jmol K

For n=1000kg of air and M=28.851gmmol of air

  ΔS=45.082Jmol K×1000kg of air×1000gm1kg×mol28.851gmΔS=1562580.153JK

(f)

Interpretation Introduction

Interpretation :

Calculate entropy change of the gas in a steady state flow process at approximately atmospheric pressure.

Concept Introduction :

The general equation for the steady state flow entropy change as the function of temperature and pressure is defined as:

  dS=CPdTT(VT)PdPat constant pressure

  ΔS=RT1T2CPRdTT......(1)

(f)

Expert Solution
Check Mark

Answer to Problem 5.27P

  ΔS=970.272JK

Explanation of Solution

Given information:

It is given that

  n=20 mol of ammonia

  T0=100C+273.15=373.15K

  T=800C+273.15=1073.15K

From equation (1)

  ΔS=RT1T2CPRdTT

Where

  T0TΔCPRdTT=[A+[BT0+(CT02+Dτ2T02)(τ+12)](τ1lnτ)]lnτ......(2)

And

  τ=TT0

The Values of above constants for ammonia in equation (2) are given in appendix C table C.1 and noted down below:

  iA103B106C105DAmmonia3.5783.02000.186

Hence

  τ=TT0τ=1073.15K373.15K=2.876

and

  T0TΔCPRdTT=[A+[BT0+(CT02+D τ 2 T 0 2)(τ+12)](τ1lnτ)]lnτT0TΔCPRdTT=[3.578+[3.020×103×373.15+(0+0.186× 105 2.8762× 373.152)(2.876+12)](2.8761ln2.876)]ln2.876T0TΔCPRdTT=5.83517

Therefore, entropy change is

  ΔS=RT1T2CPRdTTΔS=8.314Jmol K×5.83517ΔS=48.514Jmol K

For n=20 mol of ammonia

  ΔS=48.514Jmol K×20 mol of ammoniaΔS=970.272JK

(g)

Interpretation Introduction

Interpretation :

Calculate entropy change of the gas in a steady state flow process at approximately atmospheric pressure.

Concept Introduction :

The general equation for the steady state flow entropy change as the function of temperature and pressure is defined as:

  dS=CPdTT(VT)PdPat constant pressure

  ΔS=RT1T2CPRdTT......(1)

(g)

Expert Solution
Check Mark

Answer to Problem 5.27P

  ΔS=2388.95JK

Explanation of Solution

Given information:

It is given that

  n=10 mol of water

  T0=150C+273.15=423.15K

  T=300C+273.15=573.15K

From equation (1)

  ΔS=RT1T2CPRdTT

Where

  T0TΔCPRdTT=[A+[BT0+(CT02+Dτ2T02)(τ+12)](τ1lnτ)]lnτ......(2)

And

  τ=TT0

The Values of above constants for water in equation (2) are given in appendix C table C.1 and noted down below:

  iA103B106C105Dwater3.4701.45000.121

Hence

  τ=TT0τ=573.15K423.15K=1.354

and

  T0TΔCPRdTT=[A+[BT0+(CT02+D τ 2 T 0 2)(τ+12)](τ1lnτ)]lnτT0TΔCPRdTT=[3.47+[1.45×103×423.15+(0+0.121× 105 1.3542× 423.152)(1.354+12)](1.3541ln1.354)]ln1.354T0TΔCPRdTT=1.28419

Therefore, entropy change is

  ΔS=RT1T2CPRdTTΔS=8.314Jmol K×1.28419ΔS=10.677Jmol K

For n=10 mol of water

  ΔS=10.677Jmol K×10 mol of waterΔS=106.77JK

(h)

Interpretation Introduction

Interpretation :

Calculate entropy change of the gas in a steady state flow process at approximately atmospheric pressure.

Concept Introduction :

The general equation for the steady state flow entropy change as the function of temperature and pressure is defined as:

  dS=CPdTT(VT)PdPat constant pressure

  ΔS=RT1T2CPRdTT......(1)

(h)

Expert Solution
Check Mark

Answer to Problem 5.27P

  ΔS=89.783JK

Explanation of Solution

Given information:

It is given that

  n=5mol of Cl2

  T0=200C+273.15=473.15K

  T=500C+273.15=773.15K

From equation (1)

  ΔS=RT1T2CPRdTT

Where

  T0TΔCPRdTT=[A+[BT0+(CT02+Dτ2T02)(τ+12)](τ1lnτ)]lnτ......(2)

And

  τ=TT0

The Values of above constants for Cl2 in equation (2) are given in appendix C table C.1 and noted down below:

  iA103B106C105DChlorine4.4420.08900.344

Hence

  τ=TT0τ=773.15K473.15K=1.634

and

  T0TΔCPRdTT=[A+[BT0+(CT02+D τ 2 T 0 2)(τ+12)](τ1lnτ)]lnτT0TΔCPRdTT=[4.442+[0.089×103×473.15+(0+0.344× 105 1.6342× 473.152)(1.634+12)](1.6341ln1.634)]ln1.634T0TΔCPRdTT=2.15980

Therefore, entropy change is

  ΔS=RT1T2CPRdTTΔS=8.314Jmol K×2.15980ΔS=17.956Jmol K

For n=5mol of Cl2

  ΔS=17.956Jmol K×5mol of Cl2ΔS=89.783JK

(i)

Interpretation Introduction

Interpretation :

Calculate entropy change of the gas in a steady state flow process at approximately atmospheric pressure.

Concept Introduction :

The general equation for the steady state flow entropy change as the function of temperature and pressure is defined as:

  dS=CPdTT(VT)PdPat constant pressure

  ΔS=RT1T2CPRdTT......(1)

(i)

Expert Solution
Check Mark

Answer to Problem 5.27P

  ΔS=13340.52JK

Explanation of Solution

Given information:

It is given that

  n=10kg of ethylbenzene

  T0=300C+273.15=573.15K

  T=700C+273.15=973.15K

  M=106.167gmmol of ethylbenzene

From equation (1)

  ΔS=RT1T2CPRdTT

Where

  T0TΔCPRdTT=[A+[BT0+(CT02+Dτ2T02)(τ+12)](τ1lnτ)]lnτ......(2)

And

  τ=TT0

The Values of above constants for ethylbenzene in equation (2) are given in appendix C table C.1 and noted down below:

  iA103B106C105Dethylbenzene1.12455.3818.4760

Hence

  τ=TT0τ=973.15K573.15K=1.698

and

  T0TΔCPRdTT=[A+[BT0+(CT02+D τ 2 T 0 2)(τ+12)](τ1lnτ)]lnτT0TΔCPRdTT=[1.124+[55.38×103×573.15+(18.476×106×573.152)(1.698+12)](1.6981ln1.698)]ln1.698T0TΔCPRdTT=17.0354

Therefore, entropy change is

  ΔS=RT1T2CPRdTTΔS=8.314Jmol K×17.0354ΔS=141.632Jmol K

For n=10kg of ethylbenzene and M=106.167gmmol of ethylbenzene

  ΔS=141.632Jmol K×10kg of ethylbenzene×1000gm1kg×mol106.167gmΔS=13340.52JK

Want to see more full solutions like this?

Subscribe now to access step-by-step solutions to millions of textbook problems written by subject matter experts!
Students have asked these similar questions
determine the binary diffusion coefficient of CO2 in air at a) 200 K and 1 atm b)400K and 0.5atm c)600 K and 5 atm
Using Rachford-Rice in Excel, analyze flash distillation of the following feed stream at P = 1000 kPa and T = 30°C. Feed (1000 kmol/hr) is composed of ethane (25%), propane (30%), propylene (5%) and n-hexane (40%):a. What is the composition and flowrate of the vapor stream? [V should be 196 kmol/hr when solved]b. What is the composition and flowrate of the liquid stream?c. What fraction of the n-hexane (feed) ends up in the vapor phase?d. What fraction of the ethane (feed) ends up in the liquid phase?
A 40 mol % ethanol 60 mol % water mixture at 60 °C and 1 atm is heated. Using Figure 2-3  answer the following:a. At what temperature does the mixture first begin to boil? What is the composition of the first bubble of vapor?b. At what temperature would it stop boiling (assume no material is removed)? What is the composition of the last droplet of liquid?c. At 82 °C, what fraction is liquid? [should be 0.6]d. When 90% has been vaporized, what is the temperature, and what are the liquid and vapor compositions?
Knowledge Booster
Background pattern image
Similar questions
SEE MORE QUESTIONS
Recommended textbooks for you
Text book image
Introduction to Chemical Engineering Thermodynami...
Chemical Engineering
ISBN:9781259696527
Author:J.M. Smith Termodinamica en ingenieria quimica, Hendrick C Van Ness, Michael Abbott, Mark Swihart
Publisher:McGraw-Hill Education
Text book image
Elementary Principles of Chemical Processes, Bind...
Chemical Engineering
ISBN:9781118431221
Author:Richard M. Felder, Ronald W. Rousseau, Lisa G. Bullard
Publisher:WILEY
Text book image
Elements of Chemical Reaction Engineering (5th Ed...
Chemical Engineering
ISBN:9780133887518
Author:H. Scott Fogler
Publisher:Prentice Hall
Text book image
Process Dynamics and Control, 4e
Chemical Engineering
ISBN:9781119285915
Author:Seborg
Publisher:WILEY
Text book image
Industrial Plastics: Theory and Applications
Chemical Engineering
ISBN:9781285061238
Author:Lokensgard, Erik
Publisher:Delmar Cengage Learning
Text book image
Unit Operations of Chemical Engineering
Chemical Engineering
ISBN:9780072848236
Author:Warren McCabe, Julian C. Smith, Peter Harriott
Publisher:McGraw-Hill Companies, The