EBK PHYSICS FOR SCIENTISTS AND ENGINEER
9th Edition
ISBN: 8220100581557
Author: Jewett
Publisher: Cengage Learning US
expand_more
expand_more
format_list_bulleted
Concept explainers
Textbook Question
Chapter 5, Problem 5.23P
A 1 00-kg car is pulling a 300-kg trailer. Together, the car and trailer move forward with an acceleration of 2.15 m/s2. Ignore any force of air drag on the car and all friction forces on the trailer. Determine (a) the net force on the car, (b) the net force on the trailer, (c) the force exerted by the trailer on the car, and (d) the resultant force exerted by the car on the road.
Expert Solution & Answer
Want to see the full answer?
Check out a sample textbook solutionStudents have asked these similar questions
A 920 kg car is pulling a 325 kg trailer. Together the car and trailer have an acceleration of +2.25 m/s2 in the forward (positive) direction. Neglecting frictional forces on the trailer, determine the following.(a) the force on the car N(b) the net force on the trailer N(c) the force exerted on the car by the trailer N(d) the resultant force exerted on the road by the carMagnitude NDirection ° (measured from the left of vertically downwards)
A 1 000-kg car is pulling a 300-kg trailer. Together, the car and trailer have an acceleration of 2.15 m/s2 in the positive x-direction. Neglecting frictional forces on the trailer, determine (a) the net force on the car, (b) the net force on the trailer, (c) the magnitude and direction of the force exerted by the trailer on the car, and (d) the resultant force exerted by the car on the road.
A 620 kg car pulling a 495 kg trailer accelerates forward at a rate of 2.20 m/s2. Assume frictional forces on the trailer are negligible. Ignore air drag.
(a)Calculate the net force (in N) on the car.
magnitude:
direction: (forward or backward)
Chapter 5 Solutions
EBK PHYSICS FOR SCIENTISTS AND ENGINEER
Ch. 5 - Which of the following statements is correct? (a)...Ch. 5 - An object experiences no acceleration. Which of...Ch. 5 - You push an object, initially at rest, across a...Ch. 5 - Suppose you are talking by interplanetary...Ch. 5 - (i) If a fly collides with the windshield of a...Ch. 5 - You press your physics textbook flat against a...Ch. 5 - Charlie is playing with his daughter Toney in the...Ch. 5 - The driver of a speeding empty truck slams on the...Ch. 5 - In Figure OQ5.2, a locomotive has broken through...Ch. 5 - The third graders are on one side of a schoolyard,...
Ch. 5 - The driver of a speeding truck slams on the brakes...Ch. 5 - An experiment is performed on a puck on a level...Ch. 5 - The manager of a department store is pushing...Ch. 5 - Two objects are connected by a siring that passes...Ch. 5 - An object of mass m is sliding with speed v, at...Ch. 5 - A truck loaded with sand accelerates along a...Ch. 5 - A large crate of mass m is place on the flatbed of...Ch. 5 - If an object is in equilibrium, which of the...Ch. 5 - A crate remains stationary after it has been...Ch. 5 - An object of mass m moves with acceleration a down...Ch. 5 - If you hold a horizontal metal bar several...Ch. 5 - Your hands are wet, and the restroom towel...Ch. 5 - In the motion picture It Happened One Night...Ch. 5 - If a car is traveling due westward with a constant...Ch. 5 - A passenger sitting in the rear of a bus claims...Ch. 5 - A child tosses a ball straight up. She says that...Ch. 5 - A person holds a ball in her hand, (a) Identify...Ch. 5 - A spherical rubber balloon inflated with air is...Ch. 5 - A rubber ball is dropped onto the floor. What...Ch. 5 - Twenty people participate in a tug-of-war. The two...Ch. 5 - Can an object exert a force on itself? Argue for...Ch. 5 - When you push on a box with a 200-N force instead...Ch. 5 - A weight lifter stands on a bathroom scale. He...Ch. 5 - An athlete grips a light rope that passes over a...Ch. 5 - Suppose you are driving a classic car. Why should...Ch. 5 - In Figure CQ5.16, the light, taut, unstretchable...Ch. 5 - Describe two examples in which the force of...Ch. 5 - The mayor of a city reprimands some city employees...Ch. 5 - Give reasons for the answers to each of the...Ch. 5 - Balancing carefully, three boys inch out onto a...Ch. 5 - Identity action-reaction pairs in the following...Ch. 5 - As shown in Figure CQ5.22, student A, a 55-kg...Ch. 5 - Prob. 5.23CQCh. 5 - A certain orthodontist uses a wire brace to align...Ch. 5 - If a man weighs 900 N on the Earth, what would he...Ch. 5 - A 3.00-kg object undergoes an acceleration given...Ch. 5 - A certain orthodontist uses a wire brace to align...Ch. 5 - A toy rocket engine is securely fastened to a...Ch. 5 - The average speed of a nitrogen molecule in air is...Ch. 5 - The distinction between mass and weight was...Ch. 5 - (a) A cat with a mass of 850 kg in moving to the...Ch. 5 - Review. The gravitational force exerted on a...Ch. 5 - Review. The gravitational force exerted on a...Ch. 5 - Review. An electron of mass 9. 11 1031 kg has an...Ch. 5 - Besides the gravitational force, a 2.80-kg object...Ch. 5 - One or more external forces, large enough to be...Ch. 5 - A brick of mass M has been placed on a rubber...Ch. 5 - Two forces, F1=(6.00i4.00j)N and...Ch. 5 - The force exerted by the wind on the sails of a...Ch. 5 - An object of mass m is dropped al t = 0 from the...Ch. 5 - A force F applied to an object of mass m1,...Ch. 5 - Two forces F1 and F2 act on a 5.00-kg object....Ch. 5 - You stand on the seat of a chair and then hop off....Ch. 5 - A 15.0-lb block rests on the floor. (a) What force...Ch. 5 - Review. Three forces acting on an object are given...Ch. 5 - A 1 00-kg car is pulling a 300-kg trailer....Ch. 5 - If a single constant force acts on an object that...Ch. 5 - Review. Figure P5.15 shows a worker poling a boata...Ch. 5 - An iron bolt of mass 65.0 g hangs from a string...Ch. 5 - Figure P5.27 shows the horizontal forces acting on...Ch. 5 - The systems shown in Figure P5.28 are in...Ch. 5 - Assume the three blocks portrayed in Figure P5.29...Ch. 5 - A block slides down a frictionless plane having an...Ch. 5 - The distance between two telephone poles is 50.0...Ch. 5 - A 3.00-kg object is moving in a plane, with its x...Ch. 5 - A bag of cement weighing 325 N hangs in...Ch. 5 - A bag of cement whose weight is Fg hangs in...Ch. 5 - Two people pull as hard as they can on horizontal...Ch. 5 - Figure P5.36 shows loads hanging from the ceiling...Ch. 5 - An object of mass m = 1.00 kg is observed to have...Ch. 5 - A setup similar to the one shown in Figure P5.38...Ch. 5 - A simple accelerometer is constructed inside a car...Ch. 5 - An object of mass m1 = 5.00 kg placed on a...Ch. 5 - Figure P5.41 shows the speed of a persons body as...Ch. 5 - Two objects are connected by a light string that...Ch. 5 - Two blocks, each of mass m = 3.50 kg, are hung...Ch. 5 - Two blocks, each of mass m, are hung from the...Ch. 5 - In the system shown in Figure P5.23, a horizontal...Ch. 5 - An object of mass m1 hangs from a string that...Ch. 5 - A block is given an initial velocity of 5.00 m/s...Ch. 5 - A car is stuck in the mud. A tow truck pulls on...Ch. 5 - Two blocks of mass 3.50 kg and 8.00 kg arc...Ch. 5 - In the Atwood machine discussed in Example 5.9 and...Ch. 5 - In Example 5.8, we investigated the apparent...Ch. 5 - Consider a large truck carrying a heavy load, such...Ch. 5 - Review. A rifle bullet with a mass of 12.0 g...Ch. 5 - Review. A car is traveling at 50.0 mi/h on a...Ch. 5 - A 25.0-kg block is initially at rest oil a...Ch. 5 - Why is the following situation impassible? Your...Ch. 5 - To determine the coefficients of friction between...Ch. 5 - Before 1960m people believed that the maximum...Ch. 5 - To meet a U.S. Postal Service requirement,...Ch. 5 - A woman at an airport is towing her 20.0-kg...Ch. 5 - Review. A 3.00-kg block starts from rest at the...Ch. 5 - The person in Figure P5.30 weighs 170 lb. As seen...Ch. 5 - A 9.00-kg hanging object is connected by a light,...Ch. 5 - Three objects are connected on a table as shown in...Ch. 5 - Two blocks connected by a rope of negligible mass...Ch. 5 - A block of mass 3.00 kg is pushed up against a...Ch. 5 - Review. One side of the roof of a house slopes up...Ch. 5 - Review. A Chinook salmon can swim underwater at...Ch. 5 - Review. A magician pulls a tablecloth from under a...Ch. 5 - A 5.00-kg block is placed on top of a 10.0-kg...Ch. 5 - The system shown in Figure P5.49 has an...Ch. 5 - A black aluminum glider floats on a film of air...Ch. 5 - A young woman buys an inexpensive used car stock...Ch. 5 - Why is the following situation impossible? A book...Ch. 5 - Review. A hockey puck struck by a hockey stick is...Ch. 5 - A 1.00-kg glider on a horizontal air track is...Ch. 5 - A frictionless plane is 10.0 m long and inclined...Ch. 5 - A rope with mass mr is attached to a block with...Ch. 5 - Two blocks of masses m1 and m2, are placed on a...Ch. 5 - On a single, light, vertical cable that does not...Ch. 5 - An inventive child named Nick wants to reach an...Ch. 5 - In the situation described in Problem 41 and...Ch. 5 - In Example 5.7, we pushed on two blocks on a...Ch. 5 - Prob. 5.84APCh. 5 - An object of mass M is held in place by an applied...Ch. 5 - Prob. 5.86APCh. 5 - Objects with masses m, = 10.0 kg and nut = 5.00 kg...Ch. 5 - Consider the three connected objects shown in...Ch. 5 - A crate of weight Fg is pushed by a force P on a...Ch. 5 - A student is asked to measure the acceleration of...Ch. 5 - A flat cushion of mass m is released from rest at...Ch. 5 - In Figure P5.46, the pulleys and pulleys the cord...Ch. 5 - What horizontal force must be applied to a large...Ch. 5 - An 8.40-kg object slides down a fixed,...Ch. 5 - A car accelerates down a hill (Fig. P5.95), going...Ch. 5 - A time-dependent force, F = (8.00i - 4.00/j),...Ch. 5 - The board sandwiched between two other boards in...Ch. 5 - Initially, the system of objects shown in Figure...Ch. 5 - A block of mass 2.20 kg is accelerated across a...Ch. 5 - Why is the following situation impossible? A...Ch. 5 - Review. A block of mass m = 2.00 kg is released...Ch. 5 - In Figure P5.55, the incline has mass M and is...Ch. 5 - A block of mass m = 2.00 kg rests on the left edge...Ch. 5 - A mobile is formed by supporting four metal...
Knowledge Booster
Learn more about
Need a deep-dive on the concept behind this application? Look no further. Learn more about this topic, physics and related others by exploring similar questions and additional content below.Similar questions
- A force F applied to an object of mass m1 produces an acceleration of 3.00 m/s2. The same force applied to a second object of mass m2 produces an acceleration of 1.00 m/s2. (a) What is the value of the ratio m1/m2? (b) If m1 and m2 are combined into one object, find its acceleration under the action of the force F.arrow_forwardIf a single constant force acts on an object that moves on a straight line, the objects velocity is a linear function of time. The equation v = vi + at gives its velocity v as a function of time, where a is its constant acceleration. What if velocity is instead a linear function of position? Assume that as a particular object moves through a resistive medium, its speed decreases as described by the equation v = vi kx, where k is a constant coefficient and x is the position of the object. Find the law describing the total force acting on this object.arrow_forwardThree identical 5.0-kg cubes are placed on a horizontal frictionless surface in contact with one another. The cubes are lined up from left to right and a 25-N force is applied to the left side of the left cube causing all three cubes to accelerate to the right. If the cubes are each subject to a frictional force of 5.0 N, what is the magnitude of the force exerted on the right cube by the middle cube in this case?arrow_forward
- A 620 kg car pulling a 495 kg trailer accelerates forward at a rate of 2.20 m/s2. Assume frictional forces on the trailer are negligible. Ignore air drag. (d)What is the resultant force exerted by the car on the road? (Assume that the forward direction is along the +x-direction to the right and that the +y-direction points upward. Enter the magnitude in N and the direction in degrees measured from the left of the −y-direction.) Magnitude (in N): Direction: (measured from the left of the −y-direction in degrees)arrow_forwardLon Mauer is cleaning up the driveway after mowing the grass. He exerts a sudden downward force of 56.8 N at a constant angle of 54.7° directed below the horizontal direction in order to push and accelerate his 1.05-kg broom from rest. The rate of acceleration of the broom is 0.670 m/s/s. Determine the coefficient of friction between the broom bristles and the driveway.arrow_forwardIf the 1 kg standard body has an acceleration of 2.00 m/s2 at 20.0 to the positive direction of an x axis, what are (a) the x component and (b) the y component of the net force acting on the body, and (c) what is the net force in unit-vector notation?arrow_forward
- A crate is sitting on a horizontal surface where the coefficient of static friction is 0.60. A worker pushes horizontally on the crate, which has a mass of 45 kg. The crate does not move, and there are no other forces acting on it. Which of the following statements is true? (a) The force of friction on the crate is mgμs. (b) The force of friction on the crate is mgμk. (c) The force of friction on the crate is greater than the force that the worker exerts on the crate. (d) The force exerted on the worker by the crate is equal in magnitude to the force of friction exerted by the surface on the crate.arrow_forwardA 620 kg car pulling a 495 kg trailer accelerates forward at a rate of 2.20 m/s2. Assume frictional forces on the trailer are negligible. Ignore air drag. (b) Calculate the net force (in N) on the trailer. Magnitude: Direction: (forward or backward)arrow_forwardThe acceleration of an object has a magnitude a. What is the magnitude of the acceleration in the following cases? (a) All the forces acting on the object are doubled.(b) The mass and the net force acting on the object are doubled. (c) The net forceacting on the object is doubled, and its mass is halved. (d) The mass of the object isdoubled, and the net force acting on it is halved.arrow_forward
- A train consists of 50 cars, each of which has a mass of 7.50 × 103 kg. The train has an acceleration of +8.00 × 10-2 m/s2. Ignore friction and determine the tension in the coupling (a) between the 30th and 31st cars and (b) between the 49th and 50th cars.arrow_forwardA man has to push his boat on the shore across the mud to get to the water. The coefficient of friction between the boat and the mud is given by μ = 0.400. If the boat has a mass of 40 kg, calculate the magnitude of the force of friction acting on the boat.arrow_forwardProblem 4: Two teams of seven members engage in a tug of war. Each of the first team's members has an average mass of 67 kg and exerts an average force of 1350 N. Each of the second team's members has an average mass of 72 kg and exerts an average force of 1365 N. a) What is the magnitude of the acceleration of the two teams? b) What is the tension in the section of the rope between the teams?arrow_forward
arrow_back_ios
SEE MORE QUESTIONS
arrow_forward_ios
Recommended textbooks for you
- Principles of Physics: A Calculus-Based TextPhysicsISBN:9781133104261Author:Raymond A. Serway, John W. JewettPublisher:Cengage Learning
Principles of Physics: A Calculus-Based Text
Physics
ISBN:9781133104261
Author:Raymond A. Serway, John W. Jewett
Publisher:Cengage Learning
Newton's Second Law of Motion: F = ma; Author: Professor Dave explains;https://www.youtube.com/watch?v=xzA6IBWUEDE;License: Standard YouTube License, CC-BY