EBK PHYSICS FOR SCIENTISTS AND ENGINEER
9th Edition
ISBN: 8220100581557
Author: Jewett
Publisher: Cengage Learning US
expand_more
expand_more
format_list_bulleted
Concept explainers
Textbook Question
Chapter 5, Problem 5.80AP
On a single, light, vertical cable that does not stretch, a crane is lifting a 1 207-kg Ferrari and, below it, a 1 461 -kg BMW Z8. The Ferrari is moving upward with speed 3.50 m/s and acceleration 1.25 m/s2, (a) How do the velocity and acceleration of the BMW compare with those of the Ferrari? (b) Find the tension in the cable between the BMW and the Ferrari, (c) Find the tension in the cable above the Ferrari.
Expert Solution & Answer
Trending nowThis is a popular solution!
Students have asked these similar questions
MY NOTES
ASK YOUR TEACHER
An elevator car has two equal masses attached to the ceiling as shown. (Assumem= 3.75 kg.)
(a) The elevator ascends with an acceleration of magnitue 1.10 m/s. What are the tensions in the two strings? (Enter your answers in N.)
T2
(b) The maximum tension the strings can withstand is 85.6 N. What is the maximum acceleration of the elevator so that a string does not break? (Enter the magnitude in m/s.)
m/s?
A 45 kg box hangs from a rope. What is the tension in the rope if:(a) the box is at rest?(b) the box is rising with a constant velocity of 4.0 m/s?(c) the box is rising and speeding up at 4.5 m/s2?
An elevator filled with passengers has a mass of 1700 kg. (a) The elevator accelerates upward from rest at a rate of 1.20 m/s2 for 1.50 s. Calculate the tension in the cable supporting the elevator. (b) The elevator continues upward at constant velocity for 8.50 s. What is the tension in the cable during this time? (c) The elevator decelerates at a rate of 0.600m/s2 for 3.00 s. What is the tension in the cable during deceleration? (d) How high has the elevator moved above its original starting point, and what is its final velocity?
Chapter 5 Solutions
EBK PHYSICS FOR SCIENTISTS AND ENGINEER
Ch. 5 - Which of the following statements is correct? (a)...Ch. 5 - An object experiences no acceleration. Which of...Ch. 5 - You push an object, initially at rest, across a...Ch. 5 - Suppose you are talking by interplanetary...Ch. 5 - (i) If a fly collides with the windshield of a...Ch. 5 - You press your physics textbook flat against a...Ch. 5 - Charlie is playing with his daughter Toney in the...Ch. 5 - The driver of a speeding empty truck slams on the...Ch. 5 - In Figure OQ5.2, a locomotive has broken through...Ch. 5 - The third graders are on one side of a schoolyard,...
Ch. 5 - The driver of a speeding truck slams on the brakes...Ch. 5 - An experiment is performed on a puck on a level...Ch. 5 - The manager of a department store is pushing...Ch. 5 - Two objects are connected by a siring that passes...Ch. 5 - An object of mass m is sliding with speed v, at...Ch. 5 - A truck loaded with sand accelerates along a...Ch. 5 - A large crate of mass m is place on the flatbed of...Ch. 5 - If an object is in equilibrium, which of the...Ch. 5 - A crate remains stationary after it has been...Ch. 5 - An object of mass m moves with acceleration a down...Ch. 5 - If you hold a horizontal metal bar several...Ch. 5 - Your hands are wet, and the restroom towel...Ch. 5 - In the motion picture It Happened One Night...Ch. 5 - If a car is traveling due westward with a constant...Ch. 5 - A passenger sitting in the rear of a bus claims...Ch. 5 - A child tosses a ball straight up. She says that...Ch. 5 - A person holds a ball in her hand, (a) Identify...Ch. 5 - A spherical rubber balloon inflated with air is...Ch. 5 - A rubber ball is dropped onto the floor. What...Ch. 5 - Twenty people participate in a tug-of-war. The two...Ch. 5 - Can an object exert a force on itself? Argue for...Ch. 5 - When you push on a box with a 200-N force instead...Ch. 5 - A weight lifter stands on a bathroom scale. He...Ch. 5 - An athlete grips a light rope that passes over a...Ch. 5 - Suppose you are driving a classic car. Why should...Ch. 5 - In Figure CQ5.16, the light, taut, unstretchable...Ch. 5 - Describe two examples in which the force of...Ch. 5 - The mayor of a city reprimands some city employees...Ch. 5 - Give reasons for the answers to each of the...Ch. 5 - Balancing carefully, three boys inch out onto a...Ch. 5 - Identity action-reaction pairs in the following...Ch. 5 - As shown in Figure CQ5.22, student A, a 55-kg...Ch. 5 - Prob. 5.23CQCh. 5 - A certain orthodontist uses a wire brace to align...Ch. 5 - If a man weighs 900 N on the Earth, what would he...Ch. 5 - A 3.00-kg object undergoes an acceleration given...Ch. 5 - A certain orthodontist uses a wire brace to align...Ch. 5 - A toy rocket engine is securely fastened to a...Ch. 5 - The average speed of a nitrogen molecule in air is...Ch. 5 - The distinction between mass and weight was...Ch. 5 - (a) A cat with a mass of 850 kg in moving to the...Ch. 5 - Review. The gravitational force exerted on a...Ch. 5 - Review. The gravitational force exerted on a...Ch. 5 - Review. An electron of mass 9. 11 1031 kg has an...Ch. 5 - Besides the gravitational force, a 2.80-kg object...Ch. 5 - One or more external forces, large enough to be...Ch. 5 - A brick of mass M has been placed on a rubber...Ch. 5 - Two forces, F1=(6.00i4.00j)N and...Ch. 5 - The force exerted by the wind on the sails of a...Ch. 5 - An object of mass m is dropped al t = 0 from the...Ch. 5 - A force F applied to an object of mass m1,...Ch. 5 - Two forces F1 and F2 act on a 5.00-kg object....Ch. 5 - You stand on the seat of a chair and then hop off....Ch. 5 - A 15.0-lb block rests on the floor. (a) What force...Ch. 5 - Review. Three forces acting on an object are given...Ch. 5 - A 1 00-kg car is pulling a 300-kg trailer....Ch. 5 - If a single constant force acts on an object that...Ch. 5 - Review. Figure P5.15 shows a worker poling a boata...Ch. 5 - An iron bolt of mass 65.0 g hangs from a string...Ch. 5 - Figure P5.27 shows the horizontal forces acting on...Ch. 5 - The systems shown in Figure P5.28 are in...Ch. 5 - Assume the three blocks portrayed in Figure P5.29...Ch. 5 - A block slides down a frictionless plane having an...Ch. 5 - The distance between two telephone poles is 50.0...Ch. 5 - A 3.00-kg object is moving in a plane, with its x...Ch. 5 - A bag of cement weighing 325 N hangs in...Ch. 5 - A bag of cement whose weight is Fg hangs in...Ch. 5 - Two people pull as hard as they can on horizontal...Ch. 5 - Figure P5.36 shows loads hanging from the ceiling...Ch. 5 - An object of mass m = 1.00 kg is observed to have...Ch. 5 - A setup similar to the one shown in Figure P5.38...Ch. 5 - A simple accelerometer is constructed inside a car...Ch. 5 - An object of mass m1 = 5.00 kg placed on a...Ch. 5 - Figure P5.41 shows the speed of a persons body as...Ch. 5 - Two objects are connected by a light string that...Ch. 5 - Two blocks, each of mass m = 3.50 kg, are hung...Ch. 5 - Two blocks, each of mass m, are hung from the...Ch. 5 - In the system shown in Figure P5.23, a horizontal...Ch. 5 - An object of mass m1 hangs from a string that...Ch. 5 - A block is given an initial velocity of 5.00 m/s...Ch. 5 - A car is stuck in the mud. A tow truck pulls on...Ch. 5 - Two blocks of mass 3.50 kg and 8.00 kg arc...Ch. 5 - In the Atwood machine discussed in Example 5.9 and...Ch. 5 - In Example 5.8, we investigated the apparent...Ch. 5 - Consider a large truck carrying a heavy load, such...Ch. 5 - Review. A rifle bullet with a mass of 12.0 g...Ch. 5 - Review. A car is traveling at 50.0 mi/h on a...Ch. 5 - A 25.0-kg block is initially at rest oil a...Ch. 5 - Why is the following situation impassible? Your...Ch. 5 - To determine the coefficients of friction between...Ch. 5 - Before 1960m people believed that the maximum...Ch. 5 - To meet a U.S. Postal Service requirement,...Ch. 5 - A woman at an airport is towing her 20.0-kg...Ch. 5 - Review. A 3.00-kg block starts from rest at the...Ch. 5 - The person in Figure P5.30 weighs 170 lb. As seen...Ch. 5 - A 9.00-kg hanging object is connected by a light,...Ch. 5 - Three objects are connected on a table as shown in...Ch. 5 - Two blocks connected by a rope of negligible mass...Ch. 5 - A block of mass 3.00 kg is pushed up against a...Ch. 5 - Review. One side of the roof of a house slopes up...Ch. 5 - Review. A Chinook salmon can swim underwater at...Ch. 5 - Review. A magician pulls a tablecloth from under a...Ch. 5 - A 5.00-kg block is placed on top of a 10.0-kg...Ch. 5 - The system shown in Figure P5.49 has an...Ch. 5 - A black aluminum glider floats on a film of air...Ch. 5 - A young woman buys an inexpensive used car stock...Ch. 5 - Why is the following situation impossible? A book...Ch. 5 - Review. A hockey puck struck by a hockey stick is...Ch. 5 - A 1.00-kg glider on a horizontal air track is...Ch. 5 - A frictionless plane is 10.0 m long and inclined...Ch. 5 - A rope with mass mr is attached to a block with...Ch. 5 - Two blocks of masses m1 and m2, are placed on a...Ch. 5 - On a single, light, vertical cable that does not...Ch. 5 - An inventive child named Nick wants to reach an...Ch. 5 - In the situation described in Problem 41 and...Ch. 5 - In Example 5.7, we pushed on two blocks on a...Ch. 5 - Prob. 5.84APCh. 5 - An object of mass M is held in place by an applied...Ch. 5 - Prob. 5.86APCh. 5 - Objects with masses m, = 10.0 kg and nut = 5.00 kg...Ch. 5 - Consider the three connected objects shown in...Ch. 5 - A crate of weight Fg is pushed by a force P on a...Ch. 5 - A student is asked to measure the acceleration of...Ch. 5 - A flat cushion of mass m is released from rest at...Ch. 5 - In Figure P5.46, the pulleys and pulleys the cord...Ch. 5 - What horizontal force must be applied to a large...Ch. 5 - An 8.40-kg object slides down a fixed,...Ch. 5 - A car accelerates down a hill (Fig. P5.95), going...Ch. 5 - A time-dependent force, F = (8.00i - 4.00/j),...Ch. 5 - The board sandwiched between two other boards in...Ch. 5 - Initially, the system of objects shown in Figure...Ch. 5 - A block of mass 2.20 kg is accelerated across a...Ch. 5 - Why is the following situation impossible? A...Ch. 5 - Review. A block of mass m = 2.00 kg is released...Ch. 5 - In Figure P5.55, the incline has mass M and is...Ch. 5 - A block of mass m = 2.00 kg rests on the left edge...Ch. 5 - A mobile is formed by supporting four metal...
Knowledge Booster
Learn more about
Need a deep-dive on the concept behind this application? Look no further. Learn more about this topic, physics and related others by exploring similar questions and additional content below.Similar questions
- Two blocks of mass 3.50 kg and 8.00 kg are connected by a massless string that passes over a frictionless pulley (Fig. P4.47). The inclines are frictionless. Find (a) the magnitude of the acceleration of each block and (b) the tension in the string. Figure P4.47arrow_forwardLet us make the (unrealistic) assumption that a boat of mass m gliding with initial velocity v0 in water is slowed by a viscous retarding force of magnitude bv2, where b is a constant, (a) Find and sketch v(t). How long does it take the boat to reach a speed of v0/l000? (b) Find x(t). How far does the boat travel in this time? Let m = 200 kg, v0 = 2 m/s, and b = 0.2 Nm-2s2.arrow_forwardTwo blocks, each of mass m = 3.50 kg, are hung from the ceiling of an elevator as in Figure P4.33. (a) If the elevator moves with an upward acceleration a of magnitude 1.60 m/s2, find the tensions T1 and T2 in the upper and lower strings. (b) If the strings can withstand a maximum tension of 85.0 N, what maximum acceleration can the elevator have before a string breaks? Figure P4.33 Problems 33 and 34.arrow_forward
- cable is holding a 82 x 100 kg elevator that is initially stationary. (a) Find the tension in the cable when the elevator is stationary. The elevator then accelerate upwards. If the tension in the cable during acceleration period is 100000 N, find the acceleration.arrow_forwardA 200 kg steel crate is being pulled up a steel ramp, inclined 25 degrees. The crate is attached to a massless rope, around a frictionless pulley. Hanging over the edge of a cliff, and attached to the other end of the rope, is a 300 kg counterweight. a) Is the 200 kg steel crate moving up the ramp? b) If so, what is its acceleration?arrow_forwardA 276-kg glider is being pulled by a 1 950-kg jet along a horizontal runway with an acceleration of = 2.20 m/s2 to the right. Find (a) the thrust provided by the jet’s engines and (b) the magnitude of the tension in the cable connecting the jet and glider.arrow_forward
- A block of mass 3.2 kg is released from rest on a frictionless inclined plane, which makes an angle an angle 30° with the horizontal. The blocks travels a distance of 2.5 m before hitting the ground. (a) Find the acceleration of the block. (b) Find the speed of the block when it hits the ground. (c) What must be the angle of inclination to achieve an acceleration of 7.5 m/s² ?arrow_forwardA lamp hangs vertically from a cord in a descending elevator that decelerates at 1.9 m/s2. (a) If the tension in the cord is 89 N, what is the lamp's mass? (b) What is the cord's tension when the elevator ascends with an upward acceleration of 1.9 m/s2?arrow_forwardConsider a person standing on a scale in an elevator. If the elevator accelerates upwards with an acceleration of 1.47 m/s2 and the person has a mass of 98.1 kg, what would the scale read? HINT: you need to take into account the acceleration due to gravity, as well as that of the elevator.arrow_forward
- Two boxes are held together by a strong wire and attached to the ceiling of an elevator by a second wire. The mass of the top box is 14.2 kg; the mass of the bottom box is 10.4 kg. The elevator accelerates upwards at 2.84 m/s2. (Assume the wire is relatively massless.) (a) Find the tension in the top wire (connecting points A and B). (b) Find the tension in the bottom wire (connecting points C and D).arrow_forwardA 9.9 kg mass resting on a smooth (frictionless) horizontal table is connected to a cable that passes over a pulley and then is fastened to a hanging 12.8 kg mass. (a) Find the acceleration (in m/s/s) of the two objects. m/s/s (b) Find the tension (in Newtons) in the string connecting the two masses.arrow_forwardBody A in the figure weighs 96.0 N, and body B weighs 16.0 N. The coefficients of friction between A and the incline are Us - 0.590 and Hk-0.250. Angle 8 is 28.0°. Let the positive direction of an x-axis be up the incline. What is the acceleration of A if A is initially (a) at rest, (b) moving up the incline, and (c) moving down the incline? (a) Number (b) Number (c) Number Units Units Units Frictionless, massless pulley- Barrow_forward
arrow_back_ios
SEE MORE QUESTIONS
arrow_forward_ios
Recommended textbooks for you
- Principles of Physics: A Calculus-Based TextPhysicsISBN:9781133104261Author:Raymond A. Serway, John W. JewettPublisher:Cengage LearningGlencoe Physics: Principles and Problems, Student...PhysicsISBN:9780078807213Author:Paul W. ZitzewitzPublisher:Glencoe/McGraw-HillClassical Dynamics of Particles and SystemsPhysicsISBN:9780534408961Author:Stephen T. Thornton, Jerry B. MarionPublisher:Cengage Learning
Principles of Physics: A Calculus-Based Text
Physics
ISBN:9781133104261
Author:Raymond A. Serway, John W. Jewett
Publisher:Cengage Learning
Glencoe Physics: Principles and Problems, Student...
Physics
ISBN:9780078807213
Author:Paul W. Zitzewitz
Publisher:Glencoe/McGraw-Hill
Classical Dynamics of Particles and Systems
Physics
ISBN:9780534408961
Author:Stephen T. Thornton, Jerry B. Marion
Publisher:Cengage Learning
Newton's Second Law of Motion: F = ma; Author: Professor Dave explains;https://www.youtube.com/watch?v=xzA6IBWUEDE;License: Standard YouTube License, CC-BY