
(a)
Interpretation: Using Lewis dot symbol the transfer of electrons between the given atoms to form cations and anions has to be shown.
Concept Introduction: Lewis dot symbol is used to represent the valence electrons of an atom or ion using dots surrounding the element symbol along four sides of the element symbol without maintaining exact order for the placement of dots.
In Lewis dot symbol representation, the
The valence electron is the number of electrons present in the outermost shell of the atom. The number of valence electrons will be same for the same group elements which is represented by Lewis dot symbol.
(b)
Interpretation: Using Lewis dot symbol the transfer of electrons between the given atoms to form cations and anions has to be shown.
Concept Introduction: Lewis dot symbol is used to represent the valence electrons of an atom or ion using dots surrounding the element symbol along four sides of the element symbol without maintaining exact order for the placement of dots.
In Lewis dot symbol representation, the symbol of element is surrounded by "dots" indicating the number of valence electrons available for the element. The dots can be placed one at a time on all the four sides, further electron can be placed by pairing up with the first placed dots. According to the number of electrons added or removed, charge must be placed on the Lewis dot symbol for cations and anions.
The valence electron is the number of electrons present in the outermost shell of the atom. The number of valence electrons will be same for the same group elements which is represented by Lewis dot symbol.

Want to see the full answer?
Check out a sample textbook solution
Chapter 5 Solutions
Chemistry: Atoms First V1
- Please help me solve this reaction.arrow_forwardIndicate the products obtained by mixing 2,2-dimethylpropanal with acetaldehyde and sodium ethoxide in ethanol.arrow_forwardSynthesize 2-Ethyl-3-methyloxirane from dimethyl(propyl)sulfonium iodide using the necessary organic or inorganic reagents. Draw the structures of the compounds.arrow_forward
- Synthesize 2-Hydroxy-2-phenylacetonitrile from phenylmethanol using the necessary organic or inorganic reagents. Draw the structures of the compounds.arrow_forwardSynthesize N-Methylcyclohexylamine from cyclohexanol using the necessary organic or inorganic reagents. Draw the structures of the compounds.arrow_forwardSynthesize N-Methylcyclohexylamine from cyclohexanol using the necessary organic or inorganic reagents. Draw the structures of the compounds.arrow_forward
- If possible, please provide the formula of the compound 3,3-dimethylbut-2-enal.arrow_forwardSynthesize 1,4-dibromobenzene from acetanilide (N-phenylacetamide) using the necessary organic or inorganic reagents. Draw the structures of the compounds.arrow_forwardIndicate the products obtained by mixing (3-oxo-3-phenylpropyl)triphenylphosphonium bromide with sodium hydride.arrow_forward
- We mix N-ethyl-2-hexanamine with excess methyl iodide and followed by heating with aqueous Ag2O. Indicate the major products obtained.arrow_forwardIndicate the products obtained by mixing acetophenone with iodine and NaOH.arrow_forwardIndicate the products obtained by mixing 2-Propanone and ethyllithium and performing a subsequent acid hydrolysis.arrow_forward
- Introduction to General, Organic and BiochemistryChemistryISBN:9781285869759Author:Frederick A. Bettelheim, William H. Brown, Mary K. Campbell, Shawn O. Farrell, Omar TorresPublisher:Cengage LearningChemistry for Engineering StudentsChemistryISBN:9781337398909Author:Lawrence S. Brown, Tom HolmePublisher:Cengage Learning

