Heating Ventilating and Air Conditioning: Analysis and Design
Heating Ventilating and Air Conditioning: Analysis and Design
6th Edition
ISBN: 9780471470151
Author: Faye C. McQuiston, Jeffrey D. Spitler, Jerald D. Parker
Publisher: Wiley, John & Sons, Incorporated
bartleby

Concept explainers

bartleby

Videos

Textbook Question
Book Icon
Chapter 5, Problem 5.14P

Refer to Problem 5-13, and estimate the unit thermal resistance assuming the air space has one bright aluminum foil surface.

Blurred answer
Students have asked these similar questions
The Diamond Ring Solution. The processing chip on the computer that controls the navigation equipment on your spacecraft is overheating. Unless you fix the problem, the chip will be damaged and the navigation system will shut down. You open the panel and find that the small copper disk that was supposed to bridge the gap between the smooth top of the chip and the cooling plate is missing, leaving a 2.0 mm gap between them. In this configuration, the heat cannot escape the chip at the required rate. You notice by the thin smudge of thermal grease (a highly thermally conductive material used to promote good thermal contact between surfaces) that the missing copper disk was 2.0 mm thick and had a diameter of 1.0 cm. You know that the chip is designed to run below 70 °C, and the copper cooling plate is held at a constant 5.0 °C. (a) What was the rate of heat flow from the chip to the copper plate when the original copper disk was in place and the chip was at its maximum operating…
(a) Find the refrigeration capacity if no insulation is used for the walls and ceiling. (b) Select insulation(s) for the wall and ceiling to reduce the refrigeration capacity. Evaluate the thickness required for the insulation you selected to reduce the refrigeration load by approximately 30%. (c) Add a 1m x 1m window glass to the room. Use the data collected from previous parts. Assume the internal surroundings surfaces (e.g., walls and ceilings) have the same temperature as the inside temperature, and the external surroundings (landscape, buildings, etc.) are also at the same temperature as the outside temperature. Assume the convection coefficients between air (internal and external) and the glass are the same as the walls and the air. If the glass has an emissivity of 0.9, calculate the rate of heat loss through the glass. Assume steady-state conditions, negligible temperature gradients in the glass, and both inner and outer surfaces exposed to large surroundings.
There are 2 options to be considered to form the insulation layer between the refractory brick and air space, which are fiberglass and firebrick. Calculate the minimum thickness required for the both fiberglass and firebrick. Which option do you recommend? Comment. State the assumption in your calculation. Based on your recommendation, calculate the temperature at each interface throughout the wall and draw a temperature variation diagram from inside wall surface to outside wall surface. * Refractory brick Fiberglass or firebrick? 0.5" Plaster Heat Ambient source Air spáce 4 Concrete block Figure 2

Chapter 5 Solutions

Heating Ventilating and Air Conditioning: Analysis and Design

Ch. 5 - Estimate what fraction of the heat transfer for a...Ch. 5 - Make a table similar to Table 5-4a showing...Ch. 5 - Estimate the unit thermal resistance for a...Ch. 5 - Refer to Problem 5-13, and estimate the unit...Ch. 5 - A ceiling space is formed by a large flat roof and...Ch. 5 - A wall is 20 ft (6.1 m) wide and 8 ft (2.4 m) high...Ch. 5 - Estimate the heat-transfer rate per square foot...Ch. 5 - A wall exactly like the one described in Table...Ch. 5 - Prob. 5.19PCh. 5 - Compute the overall heat-transfer coefficient for...Ch. 5 - Compute the overall heat transfer for a single...Ch. 5 - Determine the overall heattransfer coefficient for...Ch. 5 - A basement is 2020ft(66m) and 7 ft (2.13 m) below...Ch. 5 - Estimate the overall heat-transfer coefficient for...Ch. 5 - Rework Problem 5-23 assuming that the walls are...Ch. 5 - A heated building is built on a concrete slab with...Ch. 5 - A basement wall extends 6 ft (1.8 m) below grade...Ch. 5 - A 2440ft(7.312.2m) building has a full basement...Ch. 5 - The floor of the basement described in Problem...Ch. 5 - Assume that the ground temperature tg is 40 F (10...Ch. 5 - Use the temperatures given in Problem 5-30 and...Ch. 5 - A small office building is constructed with a...Ch. 5 - A 100 ft length of buried, uninsulated steel pipe...Ch. 5 - Estimate the heat loss from 100 m of buried...Ch. 5 - A large beverage cooler resembles a small building...Ch. 5 - Consider the wall section shown in Fig. 5-10. (a)...Ch. 5 - A building has floor plan dimensions of 3060ft....Ch. 5 - Compute the temperature of the metal roof deck of...Ch. 5 - Consider the wall section shown in Fig. -4a,...Ch. 5 - Consider the knee space shown in Fig. 5-11. The...Ch. 5 - Estimate the temperature in an unheated basement...
Knowledge Booster
Background pattern image
Mechanical Engineering
Learn more about
Need a deep-dive on the concept behind this application? Look no further. Learn more about this topic, mechanical-engineering and related others by exploring similar questions and additional content below.
Similar questions
SEE MORE QUESTIONS
Recommended textbooks for you
Text book image
Principles of Heat Transfer (Activate Learning wi...
Mechanical Engineering
ISBN:9781305387102
Author:Kreith, Frank; Manglik, Raj M.
Publisher:Cengage Learning
Understanding Conduction and the Heat Equation; Author: The Efficient Engineer;https://www.youtube.com/watch?v=6jQsLAqrZGQ;License: Standard youtube license