Solid Waste Engineering: A Global Perspective, Si Edition
Solid Waste Engineering: A Global Perspective, Si Edition
3rd Edition
ISBN: 9781305638600
Author: William A. Worrell, P. Aarne Vesilind, Christian Ludwig
Publisher: Cengage Learning
bartleby

Concept explainers

Question
Book Icon
Chapter 5, Problem 5.13P
To determine

(a)

The recovery of plastic B in the overflow.

Expert Solution
Check Mark

Answer to Problem 5.13P

The recovery of plastic B in the overflow is 92.1% .

Explanation of Solution

Given:

The feed rate is 38kg/h .

The overflow rate is 35kg/h .

Concept Used:

Write the equation to calculate percentage of recovery

  PRB=(x1x2)×100   ...... (I).

Here, the percentage of recovery of plastic B is PRB , overflow rate is x1 and the feed rate is x2 .

Calculation:

Calculate the percentage of recovery of plastic B.

Substitute for 35kg/h

  x1 and 38kg/h for x2 in Equation (I).

  PRB=( 35 kg/h 38 kg/h )×100=0.921×100=92.1%

Conclusion:

Thus, the recovery of plastic B in the overflow is 92.1% .

To determine

(b)

The purity of plastic B in the overflow.

Expert Solution
Check Mark

Answer to Problem 5.13P

The purity of plastic B in the overflow is 60.3% .

Explanation of Solution

Given:

The overflow rate of plastic A is 5kg/h .

The overflow rate of plastic B is 35kg/h .

The overflow rate of plastic C is 18kg/h .

Concept Used:

Write the equation to calculate percentage of purity.

  PPB=(x1x1+y1+z1)×100   ...... (II).

Here, the percentage of recovery of plastic B is PPB , overflow rate of plastic A, B and C are x1 , y1 and z1 respectively.

Calculation:

Calculate the percentage of purity of plastic B.

Substitute 35kg/h for x1 , 5kg/h for y1 and 18kg/h for z1 in Equation (II).

  PPB=( 35 kg/h ( 35+5+18 ) kg/h )×100=0.603×100=60.3% .

Conclusion:

Thus, the purity of plastic B in the overflow is 60.3% .

To determine

(c)

The time taken by the plastic B to reach the top.

Expert Solution
Check Mark

Answer to Problem 5.13P

The time taken by plastic B to reach the top is 220.19s .

Explanation of Solution

Given:

The density of fluid is 1.2gm/cm3 .

The viscosity of fluid is 0.015poise .

The diameter of plastic is 0.5mm .

The distance is 2m .

The density of material is 1.1gm/cm3 .

Concept Used:

Write the equation to calculate the time taken.

  t=Lv   ...... (III).

Here, the time is t , distance is L , and terminal velocity is v .

Calculation:

Calculate the terminal velocity by using Stock’s Law.

  v=d2g(ρρs)18μ   ...... (IV).

Here, the diameter of particle is d , the acceleration due to gravity is g , the density of fluid is ρ , the density of material is ρs , and the viscosity of the fluid is μ .

Calculate the terminal velocity.

Convert the unit of viscosity from poise to kg/m/s .

  μ=(0.015poise)( 0.1 kg/ m/s 1poise)=1.5×103kg/m/s

Substitute 0.5×103m for d , 9.81m/s2 for g , 1.2×103kg/m3 for ρ , 1.1×103kg/m3 for ρs and 1.5×103kg/m/s for μ in Equation (IV).

  v= ( 0.5× 10 3 m )2×9.81m/ s 2×( 1.2× 10 3 kg/ m 3 1.1× 10 3 kg/ m 3 )( 18×1.5× 10 3 kg/ m/s )=2.4525× 10 4kg/ s 20.027kg/m/s=9.083×103m/s

Calculate the time taken by the plastic B to reach the top.

Substitute 9.083×103m/s for v and 2m for L in Equation (III).

  t=2m9.083× 10 3m/s=220.19s

Conclusion:

Thus, the time taken by plastic B to reach the top is 220.19s .

Want to see more full solutions like this?

Subscribe now to access step-by-step solutions to millions of textbook problems written by subject matter experts!
Students have asked these similar questions
A gravity retaining wall is shown in the figure below. Calculate the factor of safety with respect to overturning and sliding, given the following data: Wall dimensions: H = 6 m, x₁ = 0.6 m, x2 = 2 m, x3 = 2m, x4 0.5 m, x5 = 0.75 m, x6 = 0.8 m, D= 1.5 m Soil properties: 71 = 14 kN/m³, ₁ = 32°, 72 = 18 kN/m³, 2=22°, c₂ = 40 kN/m² Y₁ c₁ = 0 H Φί x5 x6 Use the Rankine active earth pressure in your calculation. Use Yconcrete = 23.08 kN/m³. Also, use k₁ = k₂ = 2/3 and Pp = 0 in the equation FS (sliding) (ΣV) tan(k102) + Bk2c2 + Pp Pa cos a (Enter your answers to three significant figures.) FS (overturning) FS (sliding) =
For the cantilever retaining wall shown in the figure below, let the following data be given: Wall dimensions: H = 8 m, x1 = 0.4 m, x2 = 0.6 m, x3 = 1.5 m, x4 3.5 m, x5 = 0.96 m, D= 1.75 m, a = 10° Soil properties: 71 = 14.8 kN/m³, ₁ = 32°, Y₂ = 1 2 = 28°, c = 30 kN/m² 17.6 kN/m³, The value of Ka is 0.3210. For 2 = 28°: N = 25.80; N₁ = 14.72; N₁ = 16.72. c=0 H Χς Calculate the factor of safety with respect to overturning, sliding, and bearing capacity. Use Yconcrete = 21.58 kN/m³. Also, use k₁ = k₂ = 2/3 and P = 0 in the equation FS (sliding) (ΣV) tan(k₁₂) + Bk2C + Pp Pa cosa (Enter your answers to three significant figures.) FS (overturning) FS (sliding) FS (bearing) =
Question 2 The following strains are obtained by a 0-60-120 strain rosette: ε0 = 300 x 10-6, 60 = 200 x 10-6 and 120= 150 x 10-6. i. Determine strains Ex, Ey and Yxy ii. Determine the strains for 0 = 40° iii. Calculate principal strains, maximum shear strain and the orientation of principal strains iv. Determine normal stresses (σx, σy) and shear stress (Txy), if E = 200kPa and v = 0.25. (Hint: You may use stress-strain relationship for plane strain, summarised in matric format as follows: E σχ бу 1-v v 0 Ex = v 1-v 0 Ey txy. (1+v)(1 − 2v) 0 0 0.5 v
Knowledge Booster
Background pattern image
Civil Engineering
Learn more about
Need a deep-dive on the concept behind this application? Look no further. Learn more about this topic, civil-engineering and related others by exploring similar questions and additional content below.
Similar questions
SEE MORE QUESTIONS
Recommended textbooks for you
Text book image
Solid Waste Engineering
Civil Engineering
ISBN:9781305635203
Author:Worrell, William A.
Publisher:Cengage Learning,
Text book image
Materials Science And Engineering Properties
Civil Engineering
ISBN:9781111988609
Author:Charles Gilmore
Publisher:Cengage Learning
Text book image
Engineering Fundamentals: An Introduction to Engi...
Civil Engineering
ISBN:9781305084766
Author:Saeed Moaveni
Publisher:Cengage Learning
Text book image
Principles of Geotechnical Engineering (MindTap C...
Civil Engineering
ISBN:9781305970939
Author:Braja M. Das, Khaled Sobhan
Publisher:Cengage Learning
Text book image
Fundamentals of Geotechnical Engineering (MindTap...
Civil Engineering
ISBN:9781305635180
Author:Braja M. Das, Nagaratnam Sivakugan
Publisher:Cengage Learning
Text book image
Traffic and Highway Engineering
Civil Engineering
ISBN:9781305156241
Author:Garber, Nicholas J.
Publisher:Cengage Learning