FRICTION AND CLIMBING SHOES. Shoes made for the sports of bouldering and rock climbing are designed to provide a great deal of friction between the foot and the surface of the ground. Such shoes on smooth rock might have a coefficient of static friction of 1.2 and a coefficient of kinetic friction of 0.90. 5.116 For a person wearing these shoes, what’s the maximum angle (with respect to the horizontal) of a smooth rock that can be walked on without slipping? (a) 42°; (b) 50°; (c) 64°; (d) larger than 90°. 5.117 If the person steps onto a smooth rock surface that’s inclined at an angle large enough that these shoes begin to slip, what will happen? (a) She will slide a short distance and stop; (b) she will accelerate down the surface; (c) she will slide down the surface at constant speed; (d) we can’t tell what will happen without knowing her mass. 5.118 A person wearing these shoes stands on a smooth, horizontal rock. She pushes against the ground to begin running. What is the maximum horizontal acceleration she can have without slipping? (a) 0.20g; (b) 0.75g; (c) 0.90g; (d) 1.2g.
FRICTION AND CLIMBING SHOES. Shoes made for the sports of bouldering and rock climbing are designed to provide a great deal of friction between the foot and the surface of the ground. Such shoes on smooth rock might have a coefficient of static friction of 1.2 and a coefficient of kinetic friction of 0.90. 5.116 For a person wearing these shoes, what’s the maximum angle (with respect to the horizontal) of a smooth rock that can be walked on without slipping? (a) 42°; (b) 50°; (c) 64°; (d) larger than 90°. 5.117 If the person steps onto a smooth rock surface that’s inclined at an angle large enough that these shoes begin to slip, what will happen? (a) She will slide a short distance and stop; (b) she will accelerate down the surface; (c) she will slide down the surface at constant speed; (d) we can’t tell what will happen without knowing her mass. 5.118 A person wearing these shoes stands on a smooth, horizontal rock. She pushes against the ground to begin running. What is the maximum horizontal acceleration she can have without slipping? (a) 0.20g; (b) 0.75g; (c) 0.90g; (d) 1.2g.
FRICTION AND CLIMBING SHOES. Shoes made for the sports of bouldering and rock climbing are designed to provide a great deal of friction between the foot and the surface of the ground. Such shoes on smooth rock might have a coefficient of static friction of 1.2 and a coefficient of kinetic friction of 0.90.
5.116 For a person wearing these shoes, what’s the maximum angle (with respect to the horizontal) of a smooth rock that can be walked on without slipping? (a) 42°; (b) 50°; (c) 64°; (d) larger than 90°.
5.117 If the person steps onto a smooth rock surface that’s inclined at an angle large enough that these shoes begin to slip, what will happen? (a) She will slide a short distance and stop; (b) she will accelerate down the surface; (c) she will slide down the surface at constant speed; (d) we can’t tell what will happen without knowing her mass.
5.118 A person wearing these shoes stands on a smooth, horizontal rock. She pushes against the ground to begin running. What is the maximum horizontal acceleration she can have without slipping? (a) 0.20g; (b) 0.75g; (c) 0.90g; (d) 1.2g.
Figure 8.14 shows a cube at rest and a small object heading toward it. (a) Describe the directions (angle 1) at which the small object can emerge after colliding elastically with the cube. How does 1 depend on b, the so-called impact parameter? Ignore any effects that might be due to rotation after the collision, and assume that the cube is much more massive than the small object. (b) Answer the same questions if the small object instead collides with a massive sphere.
2. A projectile is shot from a launcher at an angle 0,, with an initial velocity
magnitude vo, from a point even with a tabletop. The projectile hits an apple atop a
child's noggin (see Figure 1). The apple is a height y above the tabletop, and a
horizontal distance x from the launcher. Set this up as a formal problem, and solve
for x. That is, determine an expression for x in terms of only v₁, 0, y and g.
Actually, this is quite a long expression. So, if you want, you can determine an
expression for x in terms of v., 0., and time t, and determine another expression for
timet (in terms of v., 0.,y and g) that you will solve and then substitute the value of
t into the expression for x. Your final equation(s) will be called Equation 3 (and
Equation 4).
Draw a phase portrait for an oscillating, damped spring.
Chapter 5 Solutions
University Physics with Modern Physics, Volume 1 (Chs. 1-20) (14th Edition)
Campbell Essential Biology with Physiology (5th Edition)
Knowledge Booster
Learn more about
Need a deep-dive on the concept behind this application? Look no further. Learn more about this topic, physics and related others by exploring similar questions and additional content below.