DATA In your physics lab, a block of mass m is at rest on a horizontal surface. You attach a light cord to the block and apply a horizontal force to the free end of the cord. You find that the block remains at rest until the tension T in the cord exceeds 20.0 N. For T > 20.0 N, you measure the acceleration of the block when T is maintained at a constant value, and you plot the results ( Fig. P5.109 ). The equation for the straight line that best fits your data is a = [0.182 m/(N · s 2 )] T − 2.842 m/s 2 . For this block and surface, what are (a) the coefficient of static friction and (b) the coefficient of kinetic friction? (c) If the experiment were done on the earth’s moon, where g is much smaller than on the earth, would the graph of a versus T still be fit well by a straight line? If so, how would the slope and intercept of the line differ from the values in Fig. P5.109? Or, would each of them be the same?
DATA In your physics lab, a block of mass m is at rest on a horizontal surface. You attach a light cord to the block and apply a horizontal force to the free end of the cord. You find that the block remains at rest until the tension T in the cord exceeds 20.0 N. For T > 20.0 N, you measure the acceleration of the block when T is maintained at a constant value, and you plot the results ( Fig. P5.109 ). The equation for the straight line that best fits your data is a = [0.182 m/(N · s 2 )] T − 2.842 m/s 2 . For this block and surface, what are (a) the coefficient of static friction and (b) the coefficient of kinetic friction? (c) If the experiment were done on the earth’s moon, where g is much smaller than on the earth, would the graph of a versus T still be fit well by a straight line? If so, how would the slope and intercept of the line differ from the values in Fig. P5.109? Or, would each of them be the same?
DATA In your physics lab, a block of mass m is at rest on a horizontal surface. You attach a light cord to the block and apply a horizontal force to the free end of the cord. You find that the block remains at rest until the tension T in the cord exceeds 20.0 N. For T > 20.0 N, you measure the acceleration of the block when T is maintained at a constant value, and you plot the results (Fig. P5.109). The equation for the straight line that best fits your data is a = [0.182 m/(N · s2)] T − 2.842 m/s2. For this block and surface, what are (a) the coefficient of static friction and (b) the coefficient of kinetic friction? (c) If the experiment were done on the earth’s moon, where g is much smaller than on the earth, would the graph of a versus T still be fit well by a straight line? If so, how would the slope and intercept of the line differ from the values in Fig. P5.109? Or, would each of them be the same?
Problem Eight. A snowmobile is originally at the point with position vector 31.1 m at 95.5°
counterclockwise from the x-axis, moving with velocity 4.89 m/s at 40.0°. It moves with constant
acceleration 1.73 m/s² at 200°. After 5.00 s have elapsed, find the following.
9.) The velocity vector in m/s.
(A)=-4.38+0.185ĵ
(D) = 0.185 +4.38ĵ
(B)=0.1851-4.38ĵ
(E) = 4.38 +0.185ĵ
(C) v=-0.1851-4.38ĵ
(A)=-39.3-4.30ĵ
10.) The final position vector in meters.
(B)=39.3-4.30ĵ
(C) = -4.61 +39.3ĵ
(D) = 39.31 +4.30ĵ
(E) = 4.30 +39.3ĵ
Problem Seven. A football
receiver
running
straight
downfield at 5.60 m/s is 11.5 m
in front of the quarterback when
a pass is thrown downfield at an
angle of 35.0° above the
horizon.
8.) If the receiver never changes speed and the ball is caught at the same height from which it was
thrown, find the distance between the quarterback and the receiver when the catch is made.
(A) 21.3
(B) 17.8
(C) 18.8
(D) 19.9
(E) 67.5
3
Consider a ball sliding down a ramp as shown above. The ball is already in motion at
the position 1.
Which direction best approximates the direction of instantaneous velocity vector
V when the object is at position 3?
Chapter 5 Solutions
University Physics with Modern Physics, Volume 1 (Chs. 1-20) (14th Edition)
Need a deep-dive on the concept behind this application? Look no further. Learn more about this topic, physics and related others by exploring similar questions and additional content below.