Principles of Foundation Engineering (MindTap Course List)
8th Edition
ISBN: 9781305081550
Author: Braja M. Das
Publisher: Cengage Learning
expand_more
expand_more
format_list_bulleted
Question
Chapter 5, Problem 5.10P
To determine
Find the gross ultimate bearing capacity of the clay.
Expert Solution & Answer
Want to see the full answer?
Check out a sample textbook solutionStudents have asked these similar questions
Refer to Figure 5,determine th eaverage stress increase in the clay layer below the center of the foundation due to the net foundation load of 490,500kN (net load). Using Eq.(7.25)
Refer to Figure P5.5. Using the procedure outlined in Section 5.5, determine the average stress increase in the clay layer below the center of the foundation due to the net foundation load of 900 kN
8.4 A rectangular foundation is shown in Figure P8.2, given B=2m, L=4m
q = 240 kN/m², H = 6m, and D; = 2 m.
(a) Assuming E = 3800KN/m², calculate the average elastic settlement. Use
Eq. (8.24).
(b) If the clay is normally consolidated, calculate the consolidation settlement.
Use Eq. (8.35) and y,t = 17.5 kN/m’, C, = 0.12, and e, = 1.1.
%3D
G.W.T.
D,=2 m
= 240 kN/m²
Clay
e. = .IO
H= 6 m
1.
Rock
Figure P8.2
S,(average) = µ,M0
qB
(v = 0.5)
E
(8.24)
(8.35)
Chapter 5 Solutions
Principles of Foundation Engineering (MindTap Course List)
Knowledge Booster
Similar questions
- Refer to Figure P6.8. Using the procedure outlined in Section 6.8, determine the average stress increase in the clay layer below the center of the foundation due to the net foundation load of 50 ton.arrow_forward8.4 A rectangular foundation is shown in Figure P8.2, given B= 2 m, L=4m q=240 kN/m², H=6m, and D; =2 m. (a) Assuming E = 3800KN/m², calculate the average elastic settlement. Use Eq. (8.24). (b) If the clay is normally consolidated, calculate the consolidation settlement. Use Eq. (8.35) and yat = 17.5 kN/m², C¸ = 0.12, and e, = 1.1.arrow_forward7.7 78 Eq. (7.43) and μ, = 0. Refer to Figure P7.7. Using the procedure outlined in Section 7.10, determine the average stress increase in the clay layer below the center of the foundation due to the net foundation load of 445 kN. [Use Eq. (7.26).] Figusa M70arrow_forward
- A butt weld is set on the cross section of an I-shaped beam. The re are bending moment M ard sheao forne V at the speicing position, where Ma || 20 KN m and v 374KN The beam is made of Q355 b steel and semi- automatic weld is used with welding rod E50. The des ign value of the weld tensile to Strength f" is 260 N/mnm?. c heek whethe please The stregth of the butt weld is safe by eloulation. ET 3.arrow_forwardFIGURE P8.9 square foundation, 15 m wide, carries a net column load of 500 kN as shown in Figure P8.11. Determine the average stress increaso beneath the center of the foundation in the clay layer. a. Using Eq. (8.25), b. Using Eqs. (8.26) and (8.10), and c. Using Eqs (8.26) and (8. 15). 8.11 A 500 KN (net load) Sand 0.9 m Clay 3 marrow_forward1. Figure 1. shows a continuous foundation on a deposit of sand layer and variation of the elasticity of the soil (E.). Assuming y = 18 kN/m³ and C2 for 10 years, calculate the elastic settlement of the foundation using the strain influence factor method of Schmertmann et al., 1978. 1.5 m Sand 2.5 m 0 2 14 q=195 kN/m² Depth (m) Figure 1. E,= 6000 E, <= 12,000 E, (kN/m²) E,= 10,000arrow_forward
- A rigid foundation is subjected to a vertical column load, P = 355 kN, as shown in Figure 11.43. Estimate the elastic settlement due to the net applied pressure, Ao, on the foundation. Given: B = 2 m; L = 3 m; D, = 1.5 m; H = 4 m; E, = 13,500 kN/m²; and µ, = 0.4. Foundation Δσ D BX L Soil Poisson's ratio E, = modulus of elasticity H %3D Rock O Cengage Leaming 2014arrow_forwardA rigid foundation is subjected to a vertical column load, P = 355 kN, as shown in Figure 11.43. Estimate the elastic settlement due to the net applied pressure, Ao, on the foundation. Given: B = 2 m; L = 3 m; D, = 1.5 m; H = 4 m; E, = 13,500 kN/m²; and µ, = 0.4. Foundation Δσ Dr Soil Hg = Poisson's ratio E, modulus of elasticity H %3D Rock O Cengage Leaming 2014arrow_forward7.14 Refer to Figure 7.15. For a foundation on a layer of sand, given: B = 5 ft, L = 10 ft, d = 5 ft, B = 26.6°, e = 0.5 ft, and & = 10°. The Pressuremeter testing at the site pro- duced a mean Pressuremeter curve for which the pam) versus AR/R, points are as follow. AR/R. (1) P,(m) (lb/in.?) (2) 0.002 7.2 0.004 24.2 0.008 32.6 0.012 42.4 0.024 68.9 0.05 126.1 0.08 177.65 0.1 210.5 0.2 369.6 What should be the magnitude of Q, for a settlement (center) of 1 in.? Foundation BxL В Figure 7.15 Definition of parameters-B,arrow_forward
- Please answer the following question with a step by step solution so I can follow and understand, explain theoryarrow_forwardA rigid foundation is subjected to a vertical column load, P = 355 kN, as shown in Figure 11.43. Estimate the elastic settlement due to the net applied pressure, Ao, on the foundation. Given: B = 2 m; L = 3 m; D; = 1.5 m; H = 4 m; E, 13,500 kN/m²; and u, = 0.4. Foundation Ao. B×L Soil %3D Poisson's ratio E, - modulus of elasticity Rockarrow_forwardExample 5.7 Consider a rectangular foundation 2 mx 4 m in plan at a depth of 1.2 m in a sand deposit, as shown in Figure 5.23a. Given: y = 17.5 kN/m³; ā = 145 kN/m², and the following approximated variation of qc with z: 1.2 m q=145 kN/m² ++++y=17.5 kN/m³ z (m) 9c (kN/m²) B=2m- 0-0.5 2250 L=4 m 0.5-2.5 3430 2.5-5.0 2950 Estimate the elastic settlement of the foundation using the strain influence factor method.arrow_forward
arrow_back_ios
SEE MORE QUESTIONS
arrow_forward_ios
Recommended textbooks for you
- Principles of Foundation Engineering (MindTap Cou...Civil EngineeringISBN:9781337705028Author:Braja M. Das, Nagaratnam SivakuganPublisher:Cengage LearningPrinciples of Foundation Engineering (MindTap Cou...Civil EngineeringISBN:9781305081550Author:Braja M. DasPublisher:Cengage LearningFundamentals of Geotechnical Engineering (MindTap...Civil EngineeringISBN:9781305635180Author:Braja M. Das, Nagaratnam SivakuganPublisher:Cengage Learning
Principles of Foundation Engineering (MindTap Cou...
Civil Engineering
ISBN:9781337705028
Author:Braja M. Das, Nagaratnam Sivakugan
Publisher:Cengage Learning
Principles of Foundation Engineering (MindTap Cou...
Civil Engineering
ISBN:9781305081550
Author:Braja M. Das
Publisher:Cengage Learning
Fundamentals of Geotechnical Engineering (MindTap...
Civil Engineering
ISBN:9781305635180
Author:Braja M. Das, Nagaratnam Sivakugan
Publisher:Cengage Learning