Determine the roots of
(a)
To calculate: The real roots of the equation
Answer to Problem 4P
Solution: Graphically, the real roots of the equation are approximated as
Explanation of Solution
Given Information: The equation
Formula used: The roots of an equation can be represented graphically by the x-coordinate of the point where the graph intercepts the x-axis.
Calculation:
Use the following MATLAB code to plot the function
Execute the above code to obtain the plot as,
From the plot, the zeros of the equation are approximated as
(b)
To calculate: The root of the equation
Answer to Problem 4P
Solution: The root of the equation is approximated as
Explanation of Solution
Given Information: The function equation is
Initial guesses are,
Formula used: A root of an equation can be obtained using the bisection method as follows:
1. Choose two values of x, say a and b such that
2. Estimate the root by
3. If,
Calculation:
For the function
Thus,
Calculate the first root to be,
Further,
Thus,
Calculate the second root to be:
The approximate error is computed as:
Therefore, the approximate relative percentage error is 100%.
Furthermore,
Thus,
Calculate the third root to be:
The approximate error is computed as:
The approximate error is 33.3%.
Further,
Thus,
Calculate the fourth root to be:
The approximate error is computed as:
The approximate error is 14.28%.
Thus,
Therefore,
Calculate the fifth root to be:
The approximate error is computed as:
The approximate error is 7.69%.
Thus,
Therefore,
Calculate the sixth root to be:
The approximate error is computed as:
The approximate error is 3.7%.
Thus,
Therefore,
Calculate the seventh root to be:
The approximate error is computed as:
The approximate error is 1.89%.
Further,
Thus,
Calculate the eighth root to be:
The approximate error is computed as:
The approximate error is 0.93%.
As,
(c)
To calculate: The root of the equation
Answer to Problem 4P
Solution: The root of the equation can be approximated as
Explanation of Solution
Given Information: The equation
Initial guesses are,
Formula used: A root of an equation can be obtained using the false-position method as follows:
1. Choose two values of x, say a and b such that
2. Estimate the root by
3. If,
Calculation:
For the function
Thus,
Calculate the first root to be,
Now,
Thus,
Calculate the second root to be:
The approximate error is computed as:
The approximate relative percentage error is 24.25%.
Further,
Thus,
Calculate the third root to be:
The approximate error is computed as:
The approximate error is 6.36%.
Now,
Thus,
Calculate the fourth root to be:
The approximate error is computed as:
The approximate error is 1.68%.
Now,
Thus,
Calculate the fifth root would be:
The approximate error is computed as:
The approximate error is 0.45%.
As,
Want to see more full solutions like this?
Chapter 5 Solutions
EBK NUMERICAL METHODS FOR ENGINEERS
Additional Engineering Textbook Solutions
University Calculus
University Calculus: Early Transcendentals (4th Edition)
Algebra and Trigonometry (6th Edition)
Mathematics for the Trades: A Guided Approach (11th Edition) (What's New in Trade Math)
Beginning and Intermediate Algebra
Calculus: Early Transcendentals (2nd Edition)
- 1. For each of the functions below, describe the domain of definition that is understood: 1 (a) f(z) = (b) f(z) = Arg z²+1 Z 1 (c) f(z) = (d) f(z) = 1 - | z | 2° Ans. (a) z±i; (b) Rez 0.arrow_forward44 4. Write the function f(x)=2+ ANALYTIC FUNCTIONS 1 (z = 0) Z. in the form f(z) = u(r, 0) + iv(r, 0). Ans. f(z) = = (1 + ² ) cos+ir i ( r — 1 ) sin 0. r CHAP. 2arrow_forwardGiven the (3-2-1) Euler angle set (10,20,30) degrees, find the equivalent (3-1-3) Euler angles. All the following Euler angle sets are 3-2-1 Euler angles. The B frame relative to N is given through the 3-2-1 EAs (10,20,30) degrees, while R relative to N is given by the EAs (-5,5,5) degrees. What is the attitude of B relative to R in terms of the 3-2-1 EAsarrow_forward
- 3. Suppose that f(z) = x² − y² −2y+i (2x-2xy), where z = x+iy. Use the expressions (see Sec. 6) x = z┼え 2 Z - Z and y = 2i to write f(z) in terms of z, and simplify the result. Ans. f(z)²+2iz.arrow_forward10. Prove that a finite set of points Z1, Z2, Zn cannot have any accumulation points.arrow_forward6. Show that a set S is open if and only if each point in S is an interior point.arrow_forward
- 2. Derive the component transformation equations for tensors shown be- low where [C] = [BA] is the direction cosine matrix from frame A to B. B[T] = [C]^[T][C]T 3. The transport theorem for vectors shows that the time derivative can be constructed from two parts: the first is an explicit frame-dependent change of the vector whereas the second is an active rotational change of the vector. The same holds true for tensors. Starting from the previous result, derive a version of transport theorem for tensors. [C] (^[T])[C] = dt d B dt B [T] + [WB/A]B[T] – TWB/A] (10 pt) (7pt)arrow_forwardShade the areas givenarrow_forwardof prove- Let (X, Td) be aspace. show that if A closed set in X and r & A, thend (r,A) +0arrow_forward
- Algebra & Trigonometry with Analytic GeometryAlgebraISBN:9781133382119Author:SwokowskiPublisher:CengageAlgebra: Structure And Method, Book 1AlgebraISBN:9780395977224Author:Richard G. Brown, Mary P. Dolciani, Robert H. Sorgenfrey, William L. ColePublisher:McDougal Littell
- Algebra and Trigonometry (MindTap Course List)AlgebraISBN:9781305071742Author:James Stewart, Lothar Redlin, Saleem WatsonPublisher:Cengage LearningGlencoe Algebra 1, Student Edition, 9780079039897...AlgebraISBN:9780079039897Author:CarterPublisher:McGraw Hill