(a)
Interpretation:
A correct set of four quantum numbers for each atomic orbital in
Concept Introduction:
Principal Quantum Number (n): In an atom, the electron energy mainly depends on principal quantum number. The energy of an electron becomes lower when the value of n is smaller. The orbital size also depends on n. The size of orbital increases with increase in value of principal quantum number (n)
Magnetic Quantum Number (
Spin Quantum Number (
(b)
Interpretation:
A correct set of four quantum numbers for each atomic orbital in
Concept Introduction:
Refer to part (a)
Want to see the full answer?
Check out a sample textbook solutionChapter 5 Solutions
OWLv2 for Moore/Stanitski's Chemistry: The Molecular Science, 5th Edition, [Instant Access], 1 term (6 months)
- Look up the van der Waals constants, b, for H2, N2, O2, and Cl2. Based on the periodic table, predict atomic radii for H, N, O, and Cl. Use these values to explain the sizes of the b constants.arrow_forward• identify an orbital (as 1s, 3p, etc.) from its quantum numbers, or vice versa.arrow_forward(a) Why do successive IEs of a given element always increase? (b) When the difference between successive IEs of a given element is exceptionally large (for example, between IE1 and IE2 of K), what do we learn about its electron configuration? (c) The bars represent the relative magnitudes of the first five ionization energies of an atom: Identify the element and write its complete electron config uration, assuming it comes from (a) Period 2; (b) Period 3; (c) Period 4.arrow_forward
- 4. Calculate (A) the energy of an electron transitioning from n=5 to n=6. (B) the wavelength of light emitted from this transition.arrow_forwardDetermine the number of valence electrons and give the electronic confi guration of the valence electrons of each element: (a) nitrogen; (b) potassium.arrow_forwardIn a given atom, what are the maximum number of electrons that are allowed to have the following sets of quantum number? If you could explain at least 2-3 to me (no matter the order, I would really appreciate it.arrow_forward
- (A) A photon has a wavelength of 599 nm. Calculate the energy of the photon in joules. Enter your answer in scientific notation. (b) what is the wave length (in nm) of radiation that has an energy content of 9.53 x 103 kJ/mol? (B part 2) in which region of the electromagnetic spectrum is this radiation found? (c) what are the possible values for ml when the principal quantum number (n) is 2 and the angular momentum quantum number is 0?arrow_forward(a) A local radio station broadcasts at a frequency of 99.6 MHz (99.6 x 10° Hz). What is the wavelength of these radio waves? Wavelength = (b) What is the frequency of orange light with a wavelength of 629 nm? Frequency = (a) Calculate the energy of a single photon of light with a frequency of 4.63×10 s1. Energy = (b) Calculate the energy of a single photon of orange light with a wavelength of 648 nm. Energy =arrow_forwardNumber 5arrow_forward
- Use the relative size of the 3s orbital represented below to an-swer the following questions about orbitals A–D.(a) Which orbital has the highest value of n? (b) Which orbital(s)have a value of l=1? l=2? (c) How many other orbitals withthe same value of n have the same shape as orbital B? Orbital C?(d) Which orbital has the highest energy? Lowest energy?arrow_forward18. (a) What did Ernest Rutherford observe during his experiments? (b) What did Niels Bohr observe during his experiments? (c) How did the work of each scientist contribute to the development of the planetary model of the atom? Explain your ideas in at least four (4) sentences.arrow_forwardParticles called muons exist in cosmic rays and can be created in particle accelerators. Muons are very similar to electrons, having the same charge and spin, but they have a mass 207 times greater. When muons arecaptured by an atom, they orbit just like an electron but with a smaller radius, since the mass in aB =0.529x 10-10 m is 207 me .(a) Calculate the radius of the n=1 orbit for a muon in a uranium ion( Z=92).(b) Compare this with the 7.5-fm radius of a uranium nucleus. Note that since the muon orbits inside the electron, it falls into a hydrogen-like orbit. Since your answer is less than the radius of the nucleus, you can seethat the photons emitted as the muon falls into its lowest orbit can give information about the nucleus.arrow_forward
- Chemistry: Matter and ChangeChemistryISBN:9780078746376Author:Dinah Zike, Laurel Dingrando, Nicholas Hainen, Cheryl WistromPublisher:Glencoe/McGraw-Hill School Pub CoChemistry: The Molecular ScienceChemistryISBN:9781285199047Author:John W. Moore, Conrad L. StanitskiPublisher:Cengage LearningChemistry for Engineering StudentsChemistryISBN:9781337398909Author:Lawrence S. Brown, Tom HolmePublisher:Cengage Learning
- General Chemistry - Standalone book (MindTap Cour...ChemistryISBN:9781305580343Author:Steven D. Gammon, Ebbing, Darrell Ebbing, Steven D., Darrell; Gammon, Darrell Ebbing; Steven D. Gammon, Darrell D.; Gammon, Ebbing; Steven D. Gammon; DarrellPublisher:Cengage Learning