a)
Interpretation: The electronic configurations for atoms of the elements are to be represented.
Concept Introduction: Electronic configurations refer to the arrangements of electrons in different orbitals around atoms' nuclei.
a)
Answer to Problem 44A
The electronic configuration of the selenium atom is
Explanation of Solution
Electronic configurations refer to the arrangements of electrons in different orbitals around atoms' nuclei.
The Aufbau principle, the Pauli exclusion principle, and Hund's rule are three rules that can be used to determine the electronic configuration of atoms.
The
Selenium contains 34 electrons.
The energy levels and symbols for each sub-level occupied by an electron are written for an atom's electrical configuration.
Each sub-level is superscripted with the number of electrons occupied. The number of electrons in an atom is equal to the sum of the superscripts.
The order of orbital filling of the atoms is given as
Where, s orbitals accommodate 2 electrons, p orbitals 6 electrons, d orbitals 10 electrons, and f orbitals 14 electrons.
The electronic configuration of the selenium atom is written as follows:
b)
Interpretation: The electronic configurations for atoms of the elements are to be represented.
Concept Introduction: Electronic configurations refer to the arrangements of electrons in different orbitals around atoms' nuclei.
b)
Answer to Problem 44A
The electronic configuration of the titanium atom is
Explanation of Solution
Electronic configurations refer to the arrangements of electrons in different orbitals around atoms' nuclei.
The Aufbau principle, the Pauli exclusion principle, and Hund's rule are three rules that can be used to determine the electronic configuration of atoms.
The atomic number of titanium is 22.
Titanium contains 22 electrons.
The energy levels and symbols for each sub-level occupied by an electron are written for an atom's electrical configuration.
Each sub-level is superscripted with the number of electrons occupied. The number of electrons in an atom is equal to the sum of the superscripts.
The order of orbital filling of the atoms is given as
Where, s orbitals accommodate 2 electrons, p orbitals 6 electrons, d orbitals 10 electrons, and f orbitals 14 electrons.
The electronic configuration of the titanium atom is written as follows:
c)
Interpretation: The electronic configurations for atoms of the elements are to be represented.
Concept Introduction: Electronic configurations refer to the arrangements of electrons in different orbitals around atoms' nuclei.
c)
Answer to Problem 44A
The electronic configuration of the vanadium atom is
Explanation of Solution
Electronic configurations refer to the arrangements of electrons in different orbitals around atoms' nuclei.
The Aufbau principle, the Pauli exclusion principle, and Hund's rule are three rules that can be used to determine the electronic configuration of atoms.
The atomic number of vanadium is 23.
Vanadium contains 23 electrons.
The energy levels and symbols for each sub-level occupied by an electron are written for an atom's electrical configuration.
Each sub-level is superscripted with the number of electrons occupied. The number of electrons in an atom is equal to the sum of the superscripts.
The order of orbital filling of the atoms is given as
Where, s orbitals accommodate 2 electrons, p orbitals 6 electrons, d orbitals 10 electrons, and f orbitals 14 electrons.
The electronic configuration of the vanadium atom is written as follows:
d)
Interpretation: The electronic configurations for atoms of the elements are to be represented.
Concept Introduction: Electronic configurations refer to the arrangements of electrons in different orbitals around atoms' nuclei.
d)
Answer to Problem 44A
The electronic configuration of the calcium atom is
Explanation of Solution
Electronic configurations refer to the arrangements of electrons in different orbitals around atoms' nuclei.
The Aufbau principle, the Pauli exclusion principle, and Hund's rule are three rules that can be used to determine the electronic configuration of atoms.
The atomic number of calcium is 20.
Neon contains 20 electrons.
The energy levels and symbols for each sub-level occupied by an electron are written for an atom's electrical configuration.
Each sub-level is superscripted with the number of electrons occupied. The number of electrons in an atom is equal to the sum of the superscripts.
The order of orbital filling of the atoms is given as
Where, s orbitals accommodate 2 electrons, p orbitals 6 electrons, d orbitals 10 electrons, and f orbitals 14 electrons.
The electronic configuration of the calcium atom is written as follows:
Chapter 5 Solutions
EP CHEMISTRY-1-YEAR LICENSE (REALIZE)
- What are the major products of the following reaction? Draw all the major products. If there are no major products, then there is no reaction that will take place. Use wedge and dash bonds when necessary.arrow_forwardTryptophan is an essential amino acid important in the synthesis of neurotransmitter serotonin in the body. What are the hybridization states, molecular geometry and approximate bond angle at the indicated carbon and nitrogen atoms? Please provide a thorough explanation that allows for undertanding of topic.arrow_forwardCan the target compound be efficiently synthesized in good yield from the substituted benzene of the starting material? If yes, draw the synthesis. Include all steps and all reactants.arrow_forward
- What are the major products of the following reaction? Draw all the major products. If there are no major products, then there is no reaction that will take place. Use wedge and dash bonds when necessary.arrow_forwardCan the following molecule be made in good yield from no more than two reactants, by moderately heating the reactants? If yes, draw the reactant or reactants. If no, then the product can't be made in one step.arrow_forwardDon't used Ai solutionarrow_forward
- ChemistryChemistryISBN:9781305957404Author:Steven S. Zumdahl, Susan A. Zumdahl, Donald J. DeCostePublisher:Cengage LearningChemistryChemistryISBN:9781259911156Author:Raymond Chang Dr., Jason Overby ProfessorPublisher:McGraw-Hill EducationPrinciples of Instrumental AnalysisChemistryISBN:9781305577213Author:Douglas A. Skoog, F. James Holler, Stanley R. CrouchPublisher:Cengage Learning
- Organic ChemistryChemistryISBN:9780078021558Author:Janice Gorzynski Smith Dr.Publisher:McGraw-Hill EducationChemistry: Principles and ReactionsChemistryISBN:9781305079373Author:William L. Masterton, Cecile N. HurleyPublisher:Cengage LearningElementary Principles of Chemical Processes, Bind...ChemistryISBN:9781118431221Author:Richard M. Felder, Ronald W. Rousseau, Lisa G. BullardPublisher:WILEY