Connect with LearnSmart for Krauskopf: The Physical Universe, 16e
16th Edition
ISBN: 9781259663895
Author: KRAUSKOPF, Konrad B.
Publisher: Mcgraw-hill Higher Education (us)
expand_more
expand_more
format_list_bulleted
Concept explainers
Question
Chapter 5, Problem 42E
To determine
Will the cardboard fall off and what will happen if there is any air in the jar.
Expert Solution & Answer
Want to see the full answer?
Check out a sample textbook solutionChapter 5 Solutions
Connect with LearnSmart for Krauskopf: The Physical Universe, 16e
Ch. 5 - Prob. 1MCCh. 5 - One gram of steam at 100C causes a more serious...Ch. 5 - Prob. 3MCCh. 5 - Heat transfer in a vacuum can occur by a....Ch. 5 - The fluid at the bottom of a container is a. under...Ch. 5 - The pressure of the earths atmosphere at sea level...Ch. 5 - Prob. 7MCCh. 5 - The density of freshwater is 1.00 g/cm3 and that...Ch. 5 - Prob. 9MCCh. 5 - Prob. 10MC
Ch. 5 - Prob. 11MCCh. 5 - Prob. 12MCCh. 5 - Prob. 13MCCh. 5 - Absolute zero may be regarded as that temperature...Ch. 5 - Prob. 15MCCh. 5 - Prob. 16MCCh. 5 - Prob. 17MCCh. 5 - Prob. 18MCCh. 5 - Prob. 19MCCh. 5 - When a vapor condenses into a liquid, a. its...Ch. 5 - Prob. 21MCCh. 5 - Prob. 22MCCh. 5 - Prob. 23MCCh. 5 - Prob. 24MCCh. 5 - Prob. 25MCCh. 5 - The physics of a refrigerator most closely...Ch. 5 - Prob. 27MCCh. 5 - Prob. 28MCCh. 5 - Prob. 29MCCh. 5 - The second law of thermodynamics does not lead to...Ch. 5 - Prob. 31MCCh. 5 - Prob. 32MCCh. 5 - Prob. 33MCCh. 5 - Prob. 34MCCh. 5 - Prob. 35MCCh. 5 - Prob. 36MCCh. 5 - Prob. 37MCCh. 5 - Prob. 38MCCh. 5 - Prob. 39MCCh. 5 - A wooden plank 200 cm long, 30 cm wide, and 40 mm...Ch. 5 - Prob. 41MCCh. 5 - Prob. 42MCCh. 5 - Prob. 43MCCh. 5 - Prob. 44MCCh. 5 - Prob. 45MCCh. 5 - Running hot water over the metal lid of a glass...Ch. 5 - When a mercury-in-glass thermometer is heated, its...Ch. 5 - Three iron bars are heated in a furnace to...Ch. 5 - Why do you think the Celsius temperature scale is...Ch. 5 - Normal room temperature is about 20C. What is this...Ch. 5 - What is the Celsius equivalent of a temperature of...Ch. 5 - Prob. 7ECh. 5 - You have a Fahrenheit thermometer in your left...Ch. 5 - Why is a piece of ice at 0C more effective in...Ch. 5 - Would it be more efficient to warm your bed on a...Ch. 5 - A cup of hot coffee can be cooled by placing a...Ch. 5 - A 150-L water heater is rated at 8 kW. If 20...Ch. 5 - Prob. 13ECh. 5 - Prob. 14ECh. 5 - Prob. 15ECh. 5 - Prob. 16ECh. 5 - Prob. 17ECh. 5 - An essential part of a home solar heating system...Ch. 5 - A 10-kg stone is dropped into a pool of water from...Ch. 5 - Why do tables of densities always include the...Ch. 5 - A room is 5 m long, 4 m wide, and 3 m high. What...Ch. 5 - A 156-kg coil of sheet steel is 0.80 mm thick and...Ch. 5 - A 50-g bracelet is suspected of being gold-plated...Ch. 5 - Prob. 24ECh. 5 - Mammals have approximately the same density as...Ch. 5 - Prob. 26ECh. 5 - Prob. 27ECh. 5 - Some water is boiled briefly in an open metal can....Ch. 5 - When a person drinks a soda through a straw, where...Ch. 5 - Prob. 30ECh. 5 - The three containers shown in Fig. 5-55 are filled...Ch. 5 - A 60-kg swami lies on a bed of nails with his body...Ch. 5 - A tire pump has a piston whose cross-sectional...Ch. 5 - Prob. 34ECh. 5 - A 1200-lb car is equally supported by its four...Ch. 5 - The smallest bone in the index finger of a 75-kg...Ch. 5 - A hypodermic syringe whose cylinder has a...Ch. 5 - Prob. 38ECh. 5 - Why does buoyancy occur? Under what circumstances...Ch. 5 - Two balls of the same size but of different mass...Ch. 5 - A wooden block is submerged in a tank of water and...Ch. 5 - Prob. 42ECh. 5 - Prob. 43ECh. 5 - Prob. 44ECh. 5 - Prob. 45ECh. 5 - Prob. 46ECh. 5 - Prob. 47ECh. 5 - Prob. 48ECh. 5 - Prob. 49ECh. 5 - Prob. 50ECh. 5 - Prob. 51ECh. 5 - Prob. 52ECh. 5 - A 200-L iron tank has a mass of 36 kg. (a) Will it...Ch. 5 - What are the equivalents of 0 K, 0C, and 0F in the...Ch. 5 - A certain quantity of hydrogen occupies a volume...Ch. 5 - A tire contains air at a pressure of 2.8 bar at...Ch. 5 - Prob. 57ECh. 5 - A weather balloon carries instruments that measure...Ch. 5 - To what Celsius temperature must a gas sample...Ch. 5 - Prob. 60ECh. 5 - Prob. 61ECh. 5 - Prob. 62ECh. 5 - Is it meaningful to say that an object at a...Ch. 5 - Prob. 64ECh. 5 - Prob. 65ECh. 5 - The pressure on a sample of hydrogen is doubled,...Ch. 5 - Prob. 67ECh. 5 - Prob. 68ECh. 5 - Prob. 69ECh. 5 - Prob. 70ECh. 5 - To what temperature must a gas sample initially at...Ch. 5 - Prob. 72ECh. 5 - Prob. 73ECh. 5 - You can safely put your hand inside a hot oven for...Ch. 5 - Prob. 75ECh. 5 - Prob. 76ECh. 5 - What is the advantage of installing the heating...Ch. 5 - Why does evaporation cool a liquid?Ch. 5 - Prob. 79ECh. 5 - Prob. 80ECh. 5 - Give as many methods as you can think of that will...Ch. 5 - How much heat is given off when 1 kg of steam at...Ch. 5 - Prob. 83ECh. 5 - Prob. 84ECh. 5 - Prob. 85ECh. 5 - Prob. 86ECh. 5 - Water at 50C can be obtained by mixing together...Ch. 5 - Prob. 88ECh. 5 - Prob. 89ECh. 5 - Prob. 90ECh. 5 - Prob. 91ECh. 5 - Is it correct to say that a refrigerator produces...Ch. 5 - Prob. 93ECh. 5 - Prob. 94ECh. 5 - An engine that operates between 2000 K and 700 K...Ch. 5 - Prob. 96ECh. 5 - Prob. 97ECh. 5 - Prob. 98ECh. 5 - Prob. 99ECh. 5 - Prob. 100E
Knowledge Booster
Learn more about
Need a deep-dive on the concept behind this application? Look no further. Learn more about this topic, physics and related others by exploring similar questions and additional content below.Similar questions
- Review. In a water pistol, a piston drives water through a large tube of area A1 into a smaller tube of area A2 as shown in Figure P14.46. The radius of the large tube is 1.00 cm and that of the small tube is 1.00 mm. The smaller tube is 3.00 cm above the larger tube. (a) If the pistol is fired horizontally at a height of 1.50 m, determine the time interval required for the water to travel from the nozzle to the ground. Neglect air resistance and assume atmospheric pressure is 1.00 atm. (b) If the desired range of the stream is 8.00 m, with what speed v2 must the stream leave the nozzle? (c) At what speed v1 must the plunger be moved to achieve the desired range? (d) What is the pressure at the nozzle? (e) Find the pressure needed in the larger tube. (f) Calculate the force that must be exerted on the trigger to achieve the desired range. (The force that must be exerted is due to pressure over and above atmospheric pressure.) Figure P14.46arrow_forwardThe average human has a density of 945 kg/m3 after in haling and 1 020 kg/m3 after exhaling. (a) Without making any swimming movements, what percentage of the human body would be above the surface in the Dead Sea (a body of water with a density of about 1 230 kg/m3) in each of these cases? (b) Given that bone and muscle are denser than fat, what physical characteristics differentiate sinkers (those who tend to sink in water) from floaters (those who readily float)?arrow_forwardAn airplane is cruising al altitude 10 km. The pressure outside the craft is 0.287 atm; within the passenger compartment, the pressure is 1.00 atm and the temperature is 20C. A small leak occurs in one of the window seals in the passenger compartment. Model the air as an ideal fluid to estimate the speed of the airstream flowing through the leak.arrow_forward
- The spirit-in-glass thermometer, invented in Florence, Italy, around 1054, consists of a tube of liquid (the spirit) containing a number of submerged glass spheres with slightly different masses (Fig. P15.70). At sufficiently low temperatures, all the spheres float, but as the temperature rises, the spheres sink one after another. The device is a crude but interesting tool for measuring temperature. Suppose the tube is filled with ethyl alcohol, whose density is 0.789 45 g/cm3 at 20.0C and decreases to 0.780 97 g/cm3 at 30.0C. (a) Assuming that one of the spheres has a radius of 1.000 cm and is in equilibrium hallway up the tube at 20.0C, determine its mass. (b) When the temperature increases to 30.0C, what mass must a second sphere of the same radius have to be in equilibrium at the halfway point? (c) At 30.0C, the first sphere has fallen to the bottom of the tube. What upward force does the bottom of the tube exert on this sphere?arrow_forward(a) How high will water rise in a glass capillary tube with a 0.500-mm radius? (b) How much gravitational potential energy does the water gain? (c) Discuss possible sources of this energy.arrow_forwardThe spirit-in-glass thermometer, invented in Florence, Italy, around 1654, consists of a tube of liquid (the spirit) containing a number of submerged glass spheres with slightly different masses (Fig. P14.41). At sufficiently low temperatures, all the spheres float, but as the temperature rises, the spheres sink one after another. The device is a crude but interesting tool for measuring temperature. Suppose the tube is filled with ethyl alcohol, whose density is 0.789 45 g/cm3 at 20.0C and decreases to 0.780 97 g/cm3 at 30.0C. (a) Assuming that one of the spheres has a radius of 1.000 cm and is in equilibrium halfway up the tube at 20.0C, determine its mass. (b) When the temperature increases to 30.0C, what mass must a second sphere of the same radius have to be in equilibrium at the halfway point? (c) At 30.0C, the first sphere has fallen to the bottom of the tube. What upward force does the bottom of the tube exert on this sphere? Figure P14.41arrow_forward
- The human brain and spinal cord are immersed in the cerebrospinal fluid. The fluid is normally continuous between the cranial and spinal cavities and exerts a pressure of 100 to 200 mm of H2O above the prevailing atmospheric pressure. In medical work, pressures are often measured in units of mm of H2O because body fluids, including the cerebrospinal fluid, typically have nearly the same density as water. The pressure of the cerebrospinal fluid can be measured by means of a spinal tap. A hollow tube is inserted into the spinal column, and the height lo which the fluid rises is observed, as shown in Figure P9.83. If the fluid ruses to a height of 160. mm, we write its gauge pressure as 160. mm H2O. (a) Express this pressure in pascals, in atmospheres, and in millimeters of mercury. (b) Sometimes it is necessary to determine whether an accident victim has suffered a crushed vertebra that is blocking the flow of cerebrospinal fluid in the spinal column. In other cases, a physician may suspect that a tumor or other growth is blocking the spinal column and inhibiting the flow of cerebrospinal fluid. Such conditions ran be investigated by means of the Queckensted test. In this procedure, the veins in the patients neck are compressed lo make the blood pressure rise in the brain. The increase in pressure in the blood vessels is transmitted to the cerebrospinal fluid. What should be the normal effect on the height of the fluid in the spinal tap? (c) Suppose compressing the veins had no effect on the level of the fluid. What might account for this phenomenon?arrow_forwardA backyard swimming pool with a circular base of diameter 6.00 m is filled to depth 1.50 m. (a) Find the absolute pressure at the bottom of the pool. (b) Two persons with combined mass 150 kg enter the pool and float quietly there. No water overflows. Find the pressure increase at the bottom of the pool after they enter the pool and float.arrow_forwardConsider the piston cylinder apparatus shown in Figure P20.81. The bottom of the cylinder contains 2.00 kg of water at just under 100.0c. The cylinder has a radius of r = 7.50 cm. The piston of mass m = 3.00 kg sits on the surface of the water. An electric heater in the cylinder base transfers energy into the water at a rate of 100 W. Assume the cylinder is much taller than shown in the figure, so we dont need to be concerned about the piston reaching the top of the cylinder. (a) Once the water begins boiling, how fast is the piston rising? Model the steam as an ideal gas. (b) After the water has completely turned to steam and the heater continues to transfer energy to the steam at the same rate, how fast is the piston rising?arrow_forward
- A vertical cylinder of cross-sectional area A is fitted with a tight-fitting, frictionless piston of mass m (Fig. P18.40). The piston is not restricted in its motion in any way and is supported by the gas at pressure P below it. Atmospheric pressure is P0. We wish to find the height h in Figure P18.40. (a) What analysis model is appropriate to describe the piston? (b) Write an appropriate force equation for the piston from this analysis model in terms of P, P0, m, A, and g. (c) Suppose n moles of an ideal gas are in the cylinder at a temperature of T. Substitute for P in your answer to part (b) to find the height h of the piston above the bottom of the cylinder. Figure P18.40arrow_forwardWater flows through a fire hose of diameter 6.35 cm at a rate of 0.0120 m3/s. The fire hose ends in a nozzle of inner diameter 2.20 cm. What is the speed with which the water exits the nozzle?arrow_forwardA U-tube open at both ends is partially filled with water (Fig. P15.67a). Oil having a density 750 kg/m3 is then poured into the right arm and forms a column L = 5.00 cm high (Fig. P15.67b). (a) Determine the difference h in the heights of the two liquid surfaces. (b) The right arm is then shielded from any air motion while air is blown across the top of the left arm until the surfaces of the two liquids are at the same height (Fig. P15.67c). Determine the speed of the air being blown across the left arm. Take the density of air as constant at 1.20 kg/m3.arrow_forward
arrow_back_ios
SEE MORE QUESTIONS
arrow_forward_ios
Recommended textbooks for you
- Principles of Physics: A Calculus-Based TextPhysicsISBN:9781133104261Author:Raymond A. Serway, John W. JewettPublisher:Cengage LearningPhysics for Scientists and Engineers: Foundations...PhysicsISBN:9781133939146Author:Katz, Debora M.Publisher:Cengage LearningCollege PhysicsPhysicsISBN:9781285737027Author:Raymond A. Serway, Chris VuillePublisher:Cengage Learning
- College PhysicsPhysicsISBN:9781305952300Author:Raymond A. Serway, Chris VuillePublisher:Cengage LearningCollege PhysicsPhysicsISBN:9781938168000Author:Paul Peter Urone, Roger HinrichsPublisher:OpenStax CollegePhysics for Scientists and Engineers, Technology ...PhysicsISBN:9781305116399Author:Raymond A. Serway, John W. JewettPublisher:Cengage Learning
Principles of Physics: A Calculus-Based Text
Physics
ISBN:9781133104261
Author:Raymond A. Serway, John W. Jewett
Publisher:Cengage Learning
Physics for Scientists and Engineers: Foundations...
Physics
ISBN:9781133939146
Author:Katz, Debora M.
Publisher:Cengage Learning
College Physics
Physics
ISBN:9781285737027
Author:Raymond A. Serway, Chris Vuille
Publisher:Cengage Learning
College Physics
Physics
ISBN:9781305952300
Author:Raymond A. Serway, Chris Vuille
Publisher:Cengage Learning
College Physics
Physics
ISBN:9781938168000
Author:Paul Peter Urone, Roger Hinrichs
Publisher:OpenStax College
Physics for Scientists and Engineers, Technology ...
Physics
ISBN:9781305116399
Author:Raymond A. Serway, John W. Jewett
Publisher:Cengage Learning
Fluids in Motion: Crash Course Physics #15; Author: Crash Course;https://www.youtube.com/watch?v=fJefjG3xhW0;License: Standard YouTube License, CC-BY