Physics for Scientists and Engineers: A Strategic Approach with Modern Physics, Books a la Carte Edition; Student Workbook for Physics for Scientists ... eText -- ValuePack Access Card (4th Edition)
4th Edition
ISBN: 9780134564234
Author: Randall D. Knight (Professor Emeritus)
Publisher: PEARSON
expand_more
expand_more
format_list_bulleted
Textbook Question
Chapter 5, Problem 33EAP
A constant force is applied to an object, causing the object to accelerate at 8.0 m/s2. What will the acceleration be if
a. The force is doubled?
b. The object’s mass is doubled?
c. The force and the object’s mass are both doubled?
d. The force is doubled and the object’s mass is halved?
Expert Solution & Answer
Want to see the full answer?
Check out a sample textbook solutionStudents have asked these similar questions
A constant force is applied to an object, causing the object to accelerate at 8.0 m/s2. What will the acceleration be ifa. The force is doubled?b. The object’s mass is doubled?c. The force and the object’s mass are both doubled?d. The force is doubled and the object’s mass is halved?
A typical car weighs about 1000 kg. An average person can push with a force that is
about half the force of gravity on her body, say about 500 N.
a. How long would it take for the car to reach walking speed of about 1.5 m/s from
an initial speed of zero?
b. How far has the car moved when it reaches that velocity?
A constant force applied to object A causes it to accelerate at 5 m/s2. The same force applied to object B causes an acceleration of 3 m/s2. Applied to object C, it causes an acceleration of 8 m/s2.a. Which object has the largest mass?b. Which object has the smallest mass?c. What is the ratio of mass A to mass B (mA/mB)?
Chapter 5 Solutions
Physics for Scientists and Engineers: A Strategic Approach with Modern Physics, Books a la Carte Edition; Student Workbook for Physics for Scientists ... eText -- ValuePack Access Card (4th Edition)
Ch. 5 - An elevator suspended by a cable is descending at...Ch. 5 - A compressed spring is pushing a block across a...Ch. 5 - A brick is falling from the roof of a three-story...Ch. 5 - In FIGURE Q5.4 block B is falling and dragging...Ch. 5 - You toss a ball straight up in the air....Ch. 5 - A constant force applied to A causes A to...Ch. 5 - An object experiencing a constant force...Ch. 5 - An object experiencing a constant force...Ch. 5 - If an object is at rest, can you conclude that...Ch. 5 - If a force is exerted on an object, is it possible...
Ch. 5 - Is the statement “An object always moves in the...Ch. 5 - Prob. 12CQCh. 5 -
13. Is it possible for the friction force on an...Ch. 5 -
14. Suppose you press your physics book against...Ch. 5 - FIGURE Q5.15 shows a hollow tube forming...Ch. 5 - Prob. 16CQCh. 5 - Which of the following are inertial reference...Ch. 5 - Prob. 1EAPCh. 5 - Prob. 2EAPCh. 5 - A baseball player is sliding into second base....Ch. 5 - Prob. 4EAPCh. 5 -
5. An arrow has just been shot from a bow and is...Ch. 5 - Two rubber bands cause an object to accelerate...Ch. 5 - Two rubber bands pulling on an object cause it to...Ch. 5 - FIGURE EX5.8 shows acceleration-versus-force graph...Ch. 5 - Prob. 9EAPCh. 5 - Prob. 10EAPCh. 5 - Prob. 11EAPCh. 5 - FIGURE EX5.12 shows an acceleration-versus-force...Ch. 5 - Prob. 13EAPCh. 5 -
14. FIGURE EX5.14 shows the acceleration of...Ch. 5 - Prob. 15EAPCh. 5 - Prob. 16EAPCh. 5 - Prob. 17EAPCh. 5 - Exercise 17 trough 19 show two of the three forces...Ch. 5 - Exercise 17 trough 19 show two of the three forces...Ch. 5 - Prob. 20EAPCh. 5 - Prob. 21EAPCh. 5 - Prob. 22EAPCh. 5 - Exercise 23 through 27 describe a situation. For...Ch. 5 - Exercise 23 through 27 describe a situation. For...Ch. 5 -
Exercise 23 through 27 describe a situation. For...Ch. 5 -
Exercise 23 through 27 describe a situation. For...Ch. 5 - Exercise 23 through 27 describe a situation. For...Ch. 5 - Prob. 28EAPCh. 5 - Prob. 29EAPCh. 5 - Prob. 30EAPCh. 5 - Prob. 31EAPCh. 5 - A single force with x-component Fxacts on a 500 g...Ch. 5 - A constant force is applied to an object, causing...Ch. 5 - A constant force is applied to an object, causing...Ch. 5 - Problem 35 through 40 show a free-body diagram....Ch. 5 - through 40 show a free-body diagram. For each:...Ch. 5 - Prob. 37EAPCh. 5 - Prob. 38EAPCh. 5 - Problem 35 through 40 show a free-body diagram....Ch. 5 - Problem 35 through 40 show a free-body diagram....Ch. 5 - In lab, you propel a cart with four known forces...Ch. 5 - Problems 42 through 52 describe a situation. For...Ch. 5 - Problems 42 through 52 describe a situation. For...Ch. 5 - Problems 42 through 52 describe a situation. For...Ch. 5 - Problems 42 through 52 describe a situation. For...Ch. 5 - Problems 42 through 52 describe a situation. For...Ch. 5 - Problems 42 through 52 describe a situation. For...Ch. 5 - Problems 42 through 52 describe a situation. For...Ch. 5 - Problems 42 through 52 describe a situation. For...Ch. 5 - Problems 42 through 52 describe a situation. For...Ch. 5 - Problems 42 through 52 describe a situation. For...Ch. 5 - Problems 42 through 52 describe a situation. For...Ch. 5 - The leaf hopper, champion jumper of the insect...Ch. 5 - Prob. 54EAPCh. 5 -
55. A heavy boxy is in the back of a truck. The...Ch. 5 - If a car stops suddenly, you feel “thrown...Ch. 5 - Prob. 57EAP
Knowledge Booster
Learn more about
Need a deep-dive on the concept behind this application? Look no further. Learn more about this topic, physics and related others by exploring similar questions and additional content below.Similar questions
- Mass and Weight The weight of an astronaut plus his space suit on the Moon is only 250 N. (a) How much does the suited astronaut weigh on Earth? (b) What is the mass on the Moon? On Earth?arrow_forwardA car with a mass of 1000.0 kg accelerates from 0 to 90.0 km/h in 10.0 s. (a) What is its acceleration? (b) What is the net force on the car?arrow_forward. As a baseball is being caught, its speed goes from 30 to 0 m/s in about 0.005 s. Its mass is 0.145 kg. (a) What is the baseball’s acceleration in m/s and in Ws? (b) What is the size of the force acting on it?arrow_forward
- A car of mass 875 kg is traveling 30.0 m/s when the driver applies the brakes, which lock the wheels. The car skids for 5.60 s in the positive x-direction before coming to rest. (a) What is the cars acceleration? (b) What magnitude force acted on the car during this time? (c) How far did the car travel?arrow_forwardA student’s backpack, full of textbooks, is hung from a spring scale attached to the ceiling of an elevator. When the elevator is accelerating downward at 3.8m/s2 , the scale reads 60 N. (a) What Is the mass of the backpack? (b) What does the scale read if the elevator moves upward while speeding up at a rate 3.8m/s2 ? (c) What does the scale read if the elevator moves upward at constant velocity? (d) If the elevator had no brakes and the cable supporting it were to break loose so that the elevator could fall freely, what would the spring scale read?arrow_forwardA 5.00105 -kg rocket is accelerating straight up. Its engines produce 1.250107 N of thrust, and air resistance is 4.50106 N. What is the rocket's acceleration? Explicitly show how you follow the steps in the Problem-Solving Strategy for Newton's laws of motion.arrow_forward
- . The Kingda Ka roller coaster in New Jersey is the world’s tallest ride of its kind. As the passenger cars are launched from rest at the start, they are accelerated uniformly to a speed of 57 m/s (128 mph) in just 3.5 s. (a) What is the acceleration experienced by passengers on this ride in m/s2? In g’s? (b) If a certain passenger has a mass of 65 kg, what is the force in newtons that acts on him during the launch phase of this ride? What is the force in pounds?arrow_forward(a) Give an example of different net external forces acting on the same system to produce different accelerations. (b) Give an example of the same net external force acting on systems of different masses, producing different accelerations. (c) What law accurately describes both effects? State it in words and as an equation.arrow_forwardA force of 30.0 N is applied in the positive x-direction to a block of mass 8.00 kg, at rest on a frictionless surface. (a) What is the blocks acceleration? (b) How fast is it going after 6.00 s?arrow_forward
- A particle with mass m = 4.00 kg accelerates according to a=(300i+200j) m/s2. a. What is the net force acting on the particle? b. What is the magnitude of this force?arrow_forwardA force of 30.0 N is applied in the positive x-direction to a block of mass 8.00 kg, at rest on a frictionless surface. (a) What is the blocks acceleration? (b) How fast is it going after 6.00 s? (Sec Sections 2.5 and 4.3.)arrow_forwardYour forehead can withstand a force of about 6.0 kN before fracturing, while your cheekbone can only withstand about 1.3 kN. a. If a 140 g baseball strikes your head at 30 m/s and stops in 0.0015 s, what is the magnitude of the ball’s acceleration? b. What is the magnitude of the force that stops the baseball? c. What force does the baseball apply to your head? Explain. d. Are you in danger of a fracture if the ball hits you in the forehead? In the cheek?arrow_forward
arrow_back_ios
SEE MORE QUESTIONS
arrow_forward_ios
Recommended textbooks for you
- College PhysicsPhysicsISBN:9781305952300Author:Raymond A. Serway, Chris VuillePublisher:Cengage LearningCollege PhysicsPhysicsISBN:9781938168000Author:Paul Peter Urone, Roger HinrichsPublisher:OpenStax College
- Physics for Scientists and Engineers, Technology ...PhysicsISBN:9781305116399Author:Raymond A. Serway, John W. JewettPublisher:Cengage LearningPhysics for Scientists and Engineers: Foundations...PhysicsISBN:9781133939146Author:Katz, Debora M.Publisher:Cengage LearningCollege PhysicsPhysicsISBN:9781285737027Author:Raymond A. Serway, Chris VuillePublisher:Cengage Learning
College Physics
Physics
ISBN:9781305952300
Author:Raymond A. Serway, Chris Vuille
Publisher:Cengage Learning
College Physics
Physics
ISBN:9781938168000
Author:Paul Peter Urone, Roger Hinrichs
Publisher:OpenStax College
Physics for Scientists and Engineers, Technology ...
Physics
ISBN:9781305116399
Author:Raymond A. Serway, John W. Jewett
Publisher:Cengage Learning
Physics for Scientists and Engineers: Foundations...
Physics
ISBN:9781133939146
Author:Katz, Debora M.
Publisher:Cengage Learning
College Physics
Physics
ISBN:9781285737027
Author:Raymond A. Serway, Chris Vuille
Publisher:Cengage Learning
Drawing Free-Body Diagrams With Examples; Author: The Physics Classroom;https://www.youtube.com/watch?v=3rZR7FSSidc;License: Standard Youtube License