ORGANIC CHEMISTRY (LL) W/WILEYPLUS NEXT
ORGANIC CHEMISTRY (LL) W/WILEYPLUS NEXT
12th Edition
ISBN: 9781119664635
Author: Solomons
Publisher: WILEY
bartleby

Concept explainers

Question
Book Icon
Chapter 5, Problem 32PP
Interpretation Introduction

Interpretation:

The Fischer projections for the given compounds are to be drawn and (R) or (S) configuration at each chirality center is to specified.

Concept Introduction:

The molecules which are non-superimposable or not identical with its mirror image are known as chiral molecules.

The pair of two mirror images which are non-identical are known as enantiomers and these are optically active.

The enantiomers, in which the path traced from the highest atomic number to the lowest atomic number is in an anticlockwise direction, are designated as S.

The enantiomers, in which the path traced from the highest atomic number to the lowest atomic number is in the clockwise direction, are designated as R.

The objects or molecules which are superimposable with its mirror images are achiral objects or molecules and these objects have a centre of symmetry or plane of symmetry.

The achiral compounds in which the plane of symmetry is present internally and consists of chiral centres are known as meso compounds, but they are optically inactive.

The stereoformula which is depicted in two dimensions, in which stereochemical information is not destroyed, is determined by the Fisher Projection formula.

The stereoisomers which are non-superimposable on each other and not mirror images of each other are known as diastereomers.

Chiral molecules are capable of rotating plane polarized light

The molecules which are superimposable or identical with their mirror images are known as achiral molecules, and achiral molecules are not capable of rotating the plane-polarised light.

Plane of symmetry is the plane that bisects the molecule in two equal halves, such that they are mirror images of each other.

Compounds having plane of symmetry are usually achiral as they do not have different atoms around the central carbon atom.

Glyceraldehyde consists of one chiral center and due to which it exists in a pair of enantiomers.

Tartaric acid has two enantiomers and two diastereomers. It has two chiral centres.

Blurred answer
Students have asked these similar questions
f) The unusual molecule [2.2.2] propellane is pictured. 1) Given the bond length and bond angles in the image, what hybridization scheme best describes the carbons marked by the askerisks? 2) What types of orbitals are used in the bond between the two carbons marked by the askerisks? 3) How does this bond compare to an ordinary carbon-carbon bond (which is usually 1.54 Å long)? CH2 1.60Å H2C た C CH2 H2C H₂C * 120° C H2
Denote the dipole for the indicated bonds in the following molecules. H3C CH3 B F-CCl3 Br-Cl | H3C Si(CH3)3 OH НО. HO H O HO OH vitamin C CH3
Q2: Draw all applicable resonance forms for the acetate ion CH3COO. Clearly show all lone pairs, charges, and arrow formalism.

Chapter 5 Solutions

ORGANIC CHEMISTRY (LL) W/WILEYPLUS NEXT

Knowledge Booster
Background pattern image
Chemistry
Learn more about
Need a deep-dive on the concept behind this application? Look no further. Learn more about this topic, chemistry and related others by exploring similar questions and additional content below.
Similar questions
SEE MORE QUESTIONS
Recommended textbooks for you
Text book image
Organic Chemistry
Chemistry
ISBN:9781305580350
Author:William H. Brown, Brent L. Iverson, Eric Anslyn, Christopher S. Foote
Publisher:Cengage Learning
Text book image
Organic Chemistry: A Guided Inquiry
Chemistry
ISBN:9780618974122
Author:Andrei Straumanis
Publisher:Cengage Learning
Text book image
Organic Chemistry
Chemistry
ISBN:9781305080485
Author:John E. McMurry
Publisher:Cengage Learning
Text book image
Chemistry for Today: General, Organic, and Bioche...
Chemistry
ISBN:9781305960060
Author:Spencer L. Seager, Michael R. Slabaugh, Maren S. Hansen
Publisher:Cengage Learning