Interpretation:
The new relationships between molecules after modifying the positions of groups is to be examined.
Concept Introduction:
The molecules which are non-superimposable or not identical with their mirror images are known as chiral molecules.
A pair of two mirror images which are non-identical is known as enantiomers which are optically active.
The objects or molecules which are superimposable with their mirror images are achiral objects or molecules and these objects have a centre of symmetry or plane of symmetry.
The achiral compounds in which plane of symmetry is present internally and consists of chiral centres are known as meso compounds but they are optically inactive.
The stereoisomers which are non-superimposable on each other and not mirror images of each other are known as diastereomers.
Chiral molecules are capable of rotating plane polarized light
The molecules which are superimposable or identical with their mirror images are known as achiral molecules, and achiral molecules are not capable of rotating the plane-polarised light.
Plane of symmetry is the plane that bisects the molecule in two equal halves, such that they are mirror images of each other.
Compounds having plane of symmetry are usually achiral as they do not have different atoms around the central carbon atom.
The objects which are non-superimposable or not identical with its mirror image are known as chiral objects. The pair of two mirror images which are non-identical are known as enantiomers.
The objects which are superimposable with its mirror images are achiral objects and these objects have a centre of symmetry or plane of symmetry.
Trending nowThis is a popular solution!
Chapter 5 Solutions
ORGANIC CHEMISTRY (LL) W/WILEYPLUS NEXT
- Draw orbitals for a and c and identify all of the molecules/functional groups' electron geometry, molecular shape and bond angles: a. H₂O b. Ketone c. Alkyne d. Etherarrow_forwardIdentify the functional groups in the following molecule, naxalone (aka narcan): HO OH Narrow_forwardBenzene-toluene equilibrium is often approximated as αBT = 2.34. Generate the y-x diagram for this relative volatility. Also, generate the equilibrium data using Raoult’s law, and compare your results to these. post excel spreadsheet w values used to generate both graphsarrow_forward
- Macroscale and Microscale Organic ExperimentsChemistryISBN:9781305577190Author:Kenneth L. Williamson, Katherine M. MastersPublisher:Brooks ColeOrganic Chemistry: A Guided InquiryChemistryISBN:9780618974122Author:Andrei StraumanisPublisher:Cengage Learning