Concept explainers
Predict/Calculate Two boxes sit side-by-side on a smooth horizontal surface. The lighter box has a mass of 5.2 kg; the heavier box has a mass of 7.4 kg (a) Find the contact force between these boxes when a horizontal force of 5.0 N is applied to the light box. (b) If the 5 0-N force is applied to the heavy box instead, is the contact force between the boxes the same as, greater than, or less than the contact force in part (a)? Explain (c) Verify your answer to part (b) by calculating the contact force in this case.
Want to see the full answer?
Check out a sample textbook solutionChapter 5 Solutions
EBK PHYSICS
Additional Science Textbook Solutions
Chemistry: The Central Science (14th Edition)
Applications and Investigations in Earth Science (9th Edition)
Fundamentals of Anatomy & Physiology (11th Edition)
College Physics: A Strategic Approach (3rd Edition)
Genetic Analysis: An Integrated Approach (3rd Edition)
Concepts of Genetics (12th Edition)
- In a television commercial, a small, spherical bead of mass 4.00 g is released from rest at t=0in a bottle of liquid shampoo. The terminal speed is observed to be 2.00 cm/s. Find (a) the value of the constant bin the equation v=mgb(1ebt/m), and (b) the value of the resistive force when the bead reaches terminal speed.arrow_forwardThe person in Figure P5.6 weighs 170 lb. As seen from the front, each light crutch makes an angle of 22.0 with the vertical. Half of the persons weight is supported by the crutches. The other half is supported by the vertical forces of the ground on the persons feet. Assuming that the person is moving with constant velocity and the force exerted by the ground on the crutches acts along the crutches, determine (a) the smallest possible coefficient of friction between crutches and ground and (b) the magnitude of the compression force in each crutch. Figure P5.6arrow_forwardWe know from studying friction forces that static friction increases with increasing normal force between the surfaces, which becomes important for vehicles traveling on icy or snowy roads that have coefficients of static friction much smaller than those of dry pavement. In particular, the greater the normal force on the drive wheels (those coupled to the engine), the better the traction. The horizontal position of the center of mass of a typical compact automobile is located 1.1 m toward the rear as measured from the front wheel axle. The wheelbase (distance from the front wheel axle to the rear wheel axle) is 2.7 m. Assume the car is stationary on level ground and has a weight of 12,000 N. Determine the total normal force on the two front tires and on the two rear tires. Which do you suppose are the drive wheels in this case?arrow_forward
- An aluminum block of mass m1 = 2.00 kg and a copper block of mass m2 = 6.00 kg are connected by a light string over a frictionless pulley. They sit on a steel surface as shown in Figure P5.46, where = 30.0. (a) When they are released from rest, will they start to move? If they do, determine (b) their acceleration and (c) the tension in the string. If they do not move, determine (d) the sum of the magnitudes of the forces of friction acting on the blocks. Figure P5.46arrow_forwardThe board sandwiched between two other boards in Figure P5.97 weighs 95.5 N. If the coefficient of static friction between the boards is 0.663, what must be the magnitude of the compression forces (assumed horizontal) acting on both sides of the center board to keep it from slipping?arrow_forwardA truck loaded with sand accelerates along a highway. The driving force on the truck remains constant. What happens to the acceleration of the truck if its trailer leaks sand at a constant rate through a hole in its bottom? (a) It decreases at a steady rate. (b) It increases at a steady rate. (c) It increases and then decreases. (d) It decreases and then increases. (e) It remains constant.arrow_forward
- This problem returns to the tightrope walker studied in Example 4.6, who created a tension of 3.94103 N in a wire making an angle 5.0° below the horizontal with each supporting pole. Calculate how much this tension stretches the steel wire if it was originally 15 m long and 0.50 cm in diameter.arrow_forwardAn iron bolt of mass 65.0 g hangs from a string 35.7 cm long. The top end of the string is fixed. Without touching it, a magnet attracts the bolt so that it remains stationary, but is displaced horizontally 28.0 cm to the tight from the previously vertical line of the string. The magnet is located to the right of the bolt and on the same vertical level as the bolt in the final configuration. (a) Draw a free-body diagram of the bolt. (b) Find the tension in the string, (c) Find the magnetic force on the bolt.arrow_forwardPart of riding a bicycle involves leaning at the correct angle when making a turn, as seen below. To be stable, the force exerted by the ground must be on a line going through the center of gravity. The force on the bicycle wheel can be resolved into two perpendicular components—friction parallel to the road (this must supply the centripetal force) and the vertical normal force (which must equal the system’s weight). (a) Show that (as defined as shown) is related to the speed vand radius of curvature rof the turn in the same way as for an ideally banked roadway—that is, =tan1(v2/rg) . (b) Calculate for a 12.0-m/s turn of radius 30.0 m (as in a race).arrow_forward
- Consider a large truck carrying a heavy load, such as steel beams. A significant hazard for the driver is that the load may slide forward, crushing the cab, if the truck stops suddenly in an accident or even in braking. Assume, for example, a 10 000-kg load sits on the flatbed of a 20 000-kg truck moving at 12.0 m/s. Assume the load is not tied down to the truck and has a coefficient of static friction of 0.500 with the truck bed. (a) Calculate the minimum stopping distance for which the load will not slide forward relative to the truck. (b) Is any piece of data unnecessary for the solution?arrow_forwardThe leg and cast in Figure P4.40 weigh 220 N (w1). Determine the weight w2 and the angle needed so that no force is exerted on the hip joint by the leg plus the cast. Figure P4.40arrow_forwardThe centre of mass of a body should lie inside the body. a) True b) Falsearrow_forward
- University Physics Volume 1PhysicsISBN:9781938168277Author:William Moebs, Samuel J. Ling, Jeff SannyPublisher:OpenStax - Rice UniversityPhysics for Scientists and Engineers: Foundations...PhysicsISBN:9781133939146Author:Katz, Debora M.Publisher:Cengage LearningCollege PhysicsPhysicsISBN:9781285737027Author:Raymond A. Serway, Chris VuillePublisher:Cengage Learning
- College PhysicsPhysicsISBN:9781938168000Author:Paul Peter Urone, Roger HinrichsPublisher:OpenStax CollegePrinciples of Physics: A Calculus-Based TextPhysicsISBN:9781133104261Author:Raymond A. Serway, John W. JewettPublisher:Cengage LearningPhysics for Scientists and Engineers with Modern ...PhysicsISBN:9781337553292Author:Raymond A. Serway, John W. JewettPublisher:Cengage Learning