Student Solutions Manual For Masterton/hurley's Chemistry: Principles And Reactions, 8th
Student Solutions Manual For Masterton/hurley's Chemistry: Principles And Reactions, 8th
8th Edition
ISBN: 9781305095236
Author: Maria Cecilia D. De Mesa, Thomas D. Mcgrath
Publisher: Cengage Learning
bartleby

Concept explainers

Question
Book Icon
Chapter 5, Problem 1QAP
Interpretation Introduction

Interpretation: The volume of the tank in liters, amount of methane gas in grams, and the temperature of the tank in Kelvin should be determined.

Concept introduction: An arithmetical multiplier which is used for converting a quantity expressed in one unit into another equivalent set of units is said to be conversion factor.

The relation between mass, molar mass and number of moles is represented as follows:

  PV=nRT

Here, P is pressure, V is volume, n is number of moles, R is Universal gas constant and T is temperature.

Expert Solution & Answer
Check Mark

Answer to Problem 1QAP

Volume of the tank is 37.9 L

Mass of the gas is 19.89 g

The temperature in Kelvin is 296.48 K.

Explanation of Solution

Volume of a gas in a container is equal to the volume of the container. Conversion factor for gallon to liters is as follows

  1 gallon=3.79 L

Convert 10 gallons into liters using the conversion factor.

  10 gallon =10 gallon×3.79 L1 gallon                =37.9 L

Therefore, volume of the tank is 37.9 L

Mass of a gas is equal to the product of its number of moles and molar mass.

Molar mass of methane, CH4 is 16 g/mol.

  Mass of a gas = moles of the gas × molar mass of the gas                        =1.243 mol×16g1 mol                         =19.89 g

Therefore, mass of the methane gas is 19.89 g.

Expression for the conversion of temperature from °F to K is as below:

  Kelvin=(°F32)×59+273.15

Plug in the given details in the expression for conversion of temperature,

                =(7432)×59+273.15               =296.48 K                

Hence, the temperature in Kelvin is 296.48 K.

Conclusion

Thus, the volume of the tank is 37.9 L

Mass of the gas is 19.89 g

The temperature in Kelvin is 296.48 K.

Want to see more full solutions like this?

Subscribe now to access step-by-step solutions to millions of textbook problems written by subject matter experts!
Students have asked these similar questions
(a 4 shows scanning electron microscope (SEM) images of extruded actions of packing bed for two capillary columns of different diameters, al 750 (bottom image) and b) 30-μm-i.d. Both columns are packed with the same stationary phase, spherical particles with 1-um diameter. A) When the columns were prepared, the figure shows that the column with the larger diameter has more packing irregularities. Explain this observation. B) Predict what affect this should have on band broadening and discuss your prediction using the van Deemter terms. C) Does this figure support your explanations in application question 33? Explain why or why not and make any changes in your answers in light of this figure. Figure 4 SEM images of sections of packed columns for a) 750 and b) 30-um-i.d. capillary columns.³
fcrip = ↓ bandwidth Il temp 32. What impact (increase, decrease, or no change) does each of the following conditions have on the individual components of the van Deemter equation and consequently, band broadening? Increase temperature Longer column Using a gas mobile phase instead of liquid Smaller particle stationary phase Multiple Paths Diffusion Mass Transfer
34. Figure 3 shows Van Deemter plots for a solute molecule using different column inner diameters (i.d.). A) Predict whether decreasing the column inner diameters increase or decrease bandwidth. B) Predict which van Deemter equation coefficient (A, B, or C) has the greatest effect on increasing or decreasing bandwidth as a function of i.d. and justify your answer. Figure 3 Van Deemter plots for hydroquinone using different column inner diameters (i.d. in μm). The data was obtained from liquid chromatography experiments using fused-silica capillary columns packed with 1.0-μm particles. 35 20 H(um) 큰 20 15 90 0+ 1500 100 75 550 01 02 594 05 μ(cm/sec) 30 15 10

Chapter 5 Solutions

Student Solutions Manual For Masterton/hurley's Chemistry: Principles And Reactions, 8th

Ch. 5 - Prob. 11QAPCh. 5 - A sealed tank at room temperature, 25C, has 22.0 g...Ch. 5 - A balloon filled with helium hasa volume of...Ch. 5 - Prob. 14QAPCh. 5 - Prob. 15QAPCh. 5 - Prob. 16QAPCh. 5 - A piece of dry ice (CO2(s)) has a mass of 22.50 g....Ch. 5 - A four-liter tank is filled with propane gas,...Ch. 5 - Prob. 19QAPCh. 5 - Prob. 20QAPCh. 5 - Calculate the densities (in g/L) of the following...Ch. 5 - Calculate the densities (in grams per liter) of...Ch. 5 - Helium-filled balloons rise in the air because the...Ch. 5 - Space probes to Mars have shown that its...Ch. 5 - Cyclopropane mixed in the proper ratio with oxygen...Ch. 5 - Phosgene is a highly toxic gas made up of carbon,...Ch. 5 - The gas in the discharge cell of a laser contains...Ch. 5 - Exhaled air contains 74.5% N2, 15.7% O2, 3.6% CO2,...Ch. 5 - A 1.58-g sample of C2H3X3(g) has a volume of 297...Ch. 5 - A 0.750-g sample of the gas PX3 is in a sealed...Ch. 5 - Nitrogen oxide is a pollutant commonly found in...Ch. 5 - Nitrogen trifluoride gas reacts with steam to...Ch. 5 - Dichlorine oxide is used as bactericide to purify...Ch. 5 - Titanium(III) chloride is used in the manufacture...Ch. 5 - Nitric acid can be prepared by bubbling dinitrogen...Ch. 5 - Potassium peroxide is used to absorb the CO2...Ch. 5 - Hydrogen cyanide (HCN) is a poisonous gas. It can...Ch. 5 - When hydrogen peroxide decomposes, oxygen is...Ch. 5 - Ammonium nitrate can be used as an effective...Ch. 5 - Acetone peroxide, C9H18O6(s), is a powerful but...Ch. 5 - Prob. 41QAPCh. 5 - A certain laser uses a gas mixture consisting of...Ch. 5 - A sample of a smoke stack emission was collected...Ch. 5 - Prob. 44QAPCh. 5 - Prob. 45QAPCh. 5 - Prob. 46QAPCh. 5 - Prob. 47QAPCh. 5 - Follow the instructions of Problem 47 for the...Ch. 5 - When acetylene, C2H2, is burned in oxygen, carbon...Ch. 5 - When ammonium nitrate decomposes at 722C,...Ch. 5 - Prob. 51QAPCh. 5 - Nitrogen gas can be obtained by decomposing...Ch. 5 - Prob. 53QAPCh. 5 - Prob. 54QAPCh. 5 - Prob. 55QAPCh. 5 - Prob. 56QAPCh. 5 - A gas effuses 1.55 times faster than propane...Ch. 5 - A gas effuses through an opening one-fifth as fast...Ch. 5 - Prob. 59QAPCh. 5 - Prob. 60QAPCh. 5 - At what temperature will a molecule of uranium...Ch. 5 - Calculate the average speed of a (a) chlorine...Ch. 5 - Prob. 63QAPCh. 5 - Prob. 64QAPCh. 5 - Prob. 65QAPCh. 5 - Prob. 66QAPCh. 5 - Prob. 67QAPCh. 5 - Prob. 68QAPCh. 5 - Prob. 69QAPCh. 5 - Given that 1.00 mol of neon and 1.00 mol of...Ch. 5 - An intermediate reaction used in the production of...Ch. 5 - Prob. 72QAPCh. 5 - Prob. 73QAPCh. 5 - Glycine is an amino acid made up of carbon,...Ch. 5 - Prob. 75QAPCh. 5 - The Lamborghini Aventador engine has a 12-cylinder...Ch. 5 - Prob. 77QAPCh. 5 - Prob. 78QAPCh. 5 - Prob. 79QAPCh. 5 - Prob. 80QAPCh. 5 - Prob. 81QAPCh. 5 - Prob. 82QAPCh. 5 - Prob. 83QAPCh. 5 - The graph below shows the distribution of...Ch. 5 - Consider the following sketch. Each square in bulb...Ch. 5 - The following figure shows three 1.00-L bulbs...Ch. 5 - Prob. 87QAPCh. 5 - Prob. 88QAPCh. 5 - Prob. 89QAPCh. 5 - Prob. 90QAPCh. 5 - Prob. 91QAPCh. 5 - A 0.2500-g sample of an Al-Zn alloy reacts with...Ch. 5 - Prob. 93QAPCh. 5 - A mixture in which the mole ratio of hydrogen to...
Knowledge Booster
Background pattern image
Chemistry
Learn more about
Need a deep-dive on the concept behind this application? Look no further. Learn more about this topic, chemistry and related others by exploring similar questions and additional content below.
Similar questions
SEE MORE QUESTIONS
Recommended textbooks for you
Text book image
Chemistry: Matter and Change
Chemistry
ISBN:9780078746376
Author:Dinah Zike, Laurel Dingrando, Nicholas Hainen, Cheryl Wistrom
Publisher:Glencoe/McGraw-Hill School Pub Co
Text book image
Chemistry: The Molecular Science
Chemistry
ISBN:9781285199047
Author:John W. Moore, Conrad L. Stanitski
Publisher:Cengage Learning
Text book image
Chemistry for Engineering Students
Chemistry
ISBN:9781337398909
Author:Lawrence S. Brown, Tom Holme
Publisher:Cengage Learning