Biochemistry
Biochemistry
6th Edition
ISBN: 9781305577206
Author: Reginald H. Garrett, Charles M. Grisham
Publisher: Cengage Learning
bartleby

Concept explainers

bartleby

Videos

Textbook Question
Book Icon
Chapter 5, Problem 1P

Answers to all problems are at the end of this book. Detailed solutions are available in the Student Solutions Manual, Study Guide, and Problems Book.

Calculating the Molecular Weight and Subunit Organization of a Protein From Its Metal Content The element molybdenum {atomic weight 95.95) constitutes 0.0K if the weight of nitrate reductase. If the molecular weight of nitrate reductase is 240,000, what is its likely quaternary structure"?

Expert Solution & Answer
Check Mark
Interpretation Introduction

Interpretation:

The quaternary structure of the nitrate reductase needs to be determined based on its molecular weight and percentage of element molybdenum with atomic weight 95.95 present in it.

Concept introduction:

Nitrate reductase’s quaternary structure can be determined by calculating molecular weight of the molybdenum and its number of moles in nitrate reductase.

From the number of moles of a species and its molar mass, mass can be calculated as follows:

  m=n×M

Here, n is number of moles and M is molar mass.

Answer to Problem 1P

Molecular weight of molybdenum=192 g/mol

Number of moles of molybdenum= 2.00 mol

Nitrate reductase’s quaternary structure consists of two peptide chain and each peptide has one mol of molybdenum. Thus, it is a dimer.

Explanation of Solution

The Nitrate reductase’s quaternary structure can be determined by calculating number of moles of the molybdenum in a nitrate reductase where one mol of molybdenum is constituted by each peptide.

Molecular weight of molybdenum = nitrate reductase’s molecular weight × molybdenum percentage in nitrate reductase

Therefore,

  Molecular weight of molybdenum=240000 g×0.8100=192 g

Molecular weight of molybdenum is used to determine the number of moles of molybdenum in nitrate reductase as follows:

  n=mM

Here, m is molecular weight of molybdenum present in nitrate reductase and M is atomic weight or molar mass of the molybdenum.

Putting the values,

  n=192 g95.95 g/mol=2 mol

Thus, the number of moles of molybdenum in nitrate reductase is 2.00 mol.

As we know that, one mol of molybdenum is constituted by each peptide. Therefore, nitrate reductase is dimer which is made up of two equivalent peptide chains. And each peptide chain consists of one mole of the molybdenum.

Conclusion

Molecular weight of molybdenum is calculated by using molecular weight of nitrate reductase and molybdenum percentage. The value of molecular weight of molybdenum is needed in finding the number of moles of molybdenum in nitrate reductase. From these calculations, it is determined that the quaternary structure of nitrate reductase constitutes two peptide chains and each chain has one mol of molybdenum.

Want to see more full solutions like this?

Subscribe now to access step-by-step solutions to millions of textbook problems written by subject matter experts!
Students have asked these similar questions
Compare and contrast primary and secondary active transport mechanisms in terms of energy utilisation and efficiency. Provide examples of each and discuss their physiological significance in maintaining ionic balance and nutrient uptake. Rubric Understanding the key concepts (clearly and accurately explains primary and secondary active transport mechanisms, showing a deep understanding of their roles) Energy utilisation analysis ( thoroughly compares energy utilisation in primary and secondary transport with specific and relevant examples Efficiency discussion Use of examples (provides relevant and accurate examples (e.g sodium potassium pump, SGLT1) with clear links to physiological significance. Clarity and structure (presents ideas logically and cohesively with clear organisation and smooth transition between sections)
9. Which one of the compounds below is the major organic product obtained from the following reaction sequence, starting with ethyl acetoacetate? 요요. 1. NaOCH2CH3 CH3CH2OH 1. NaOH, H₂O 2. H3O+ 3. A OCH2CH3 2. ethyl acetoacetate ii A 3. H3O+ OH B C D E
7. Only one of the following ketones cannot be made via an acetoacetic ester synthesis. Which one is it? Ph کہ A B C D E
Knowledge Booster
Background pattern image
Biochemistry
Learn more about
Need a deep-dive on the concept behind this application? Look no further. Learn more about this topic, biochemistry and related others by exploring similar questions and additional content below.
Similar questions
SEE MORE QUESTIONS
Recommended textbooks for you
  • Text book image
    Biochemistry
    Biochemistry
    ISBN:9781305577206
    Author:Reginald H. Garrett, Charles M. Grisham
    Publisher:Cengage Learning
Text book image
Biochemistry
Biochemistry
ISBN:9781305577206
Author:Reginald H. Garrett, Charles M. Grisham
Publisher:Cengage Learning
Chapter 7 - Human Movement Science; Author: Dr. Jeff Williams;https://www.youtube.com/watch?v=LlqElkn4PA4;License: Standard youtube license