Concept explainers
Answers to all problems are at the end of this book. Detailed solutions are available in the Student Solutions Manual, Study Guide, and Problems Book.
Calculating the Molecular Weight and Subunit Organization of a Protein From Its Metal Content The element molybdenum {atomic weight 95.95) constitutes 0.0K if the weight of nitrate reductase. If the molecular weight of nitrate reductase is 240,000, what is its likely quaternary structure"?
Interpretation:
The quaternary structure of the nitrate reductase needs to be determined based on its molecular weight and percentage of element molybdenum with atomic weight 95.95 present in it.
Concept introduction:
Nitrate reductase’s quaternary structure can be determined by calculating molecular weight of the molybdenum and its number of moles in nitrate reductase.
From the number of moles of a species and its molar mass, mass can be calculated as follows:
Here, n is number of moles and M is molar mass.
Answer to Problem 1P
Molecular weight of molybdenum=192 g/mol
Number of moles of molybdenum= 2.00 mol
Nitrate reductase’s quaternary structure consists of two peptide chain and each peptide has one mol of molybdenum. Thus, it is a dimer.
Explanation of Solution
The Nitrate reductase’s quaternary structure can be determined by calculating number of moles of the molybdenum in a nitrate reductase where one mol of molybdenum is constituted by each peptide.
Molecular weight of molybdenum = nitrate reductase’s molecular weight × molybdenum percentage in nitrate reductase
Therefore,
Molecular weight of molybdenum is used to determine the number of moles of molybdenum in nitrate reductase as follows:
Here, m is molecular weight of molybdenum present in nitrate reductase and M is atomic weight or molar mass of the molybdenum.
Putting the values,
Thus, the number of moles of molybdenum in nitrate reductase is 2.00 mol.
As we know that, one mol of molybdenum is constituted by each peptide. Therefore, nitrate reductase is dimer which is made up of two equivalent peptide chains. And each peptide chain consists of one mole of the molybdenum.
Molecular weight of molybdenum is calculated by using molecular weight of nitrate reductase and molybdenum percentage. The value of molecular weight of molybdenum is needed in finding the number of moles of molybdenum in nitrate reductase. From these calculations, it is determined that the quaternary structure of nitrate reductase constitutes two peptide chains and each chain has one mol of molybdenum.
Want to see more full solutions like this?
Chapter 5 Solutions
Biochemistry
- Answers to all problems are at the end of this book. Detailed solutions are available in the Student Solutions Manual, Study Guide, and Problems Book. (Historical Context) The Third Person of the -Helix Publication Who was Herman Branson? What was his role in the elucidation of the structure of the or-helix'.' Did he receive sufficient credit and recognition for his contributions? And how did the rest of his career unfold? Do a Google search on Herman Branson to learn about his life, and read the article by David Eisenberg under Further Reading. You may also wish to examine the original paper by Pauling, Corey, and Branson, as well as the following Web site: http://www.pirns. org/sitelmisclclassicsl..shtml Pauling, L., Corey, R. B., and Branson, H. R., 1951. The structure of proteins: two hydrogen-bonded helical configurations of the polypeptide chain. Proceedings of the National Academy of Sciences, USA 37:235-240.arrow_forwardAnswers to all problems are at the end of this book. Detailed solutions are available in the Student Solutions Manual, Study Guide, and Problems Book. The dissociation constant for a particular protein dimer is 1 micromolar. Calculate the free energy difference for the monomer-to-dimer transition.arrow_forwardAnswers to all problems are at the end of this book. Detailed solutions are available in the Student Solutions Manual, Study Guide, and Problems Book. Proteins and nucleic acids are informational macromolecules. What are the two minimal criteria for a linear informational polymer?arrow_forward
- Answers to all problems are at the end of this book. Detailed solutions are available in the Student Solutions Manual, Study Guide, and Problems Book. Interpreting Kinetics Experiments from Graphical Patterns The following graphical patterns obtained from kinetic experiments have several possible interpretations depending on the nature of the experiment and the variables being plotted. Give at least two possibilities for each.arrow_forwardAnswers to all problems are at the end of this book. Detailed solutions are available in the Student Solutions Manual, Study Guide, and Problems Book. Draw the Titration Curve for a Weak Acid and Determine its pKa from the Titration Curve When a 0.1 M solution of a weak acid was titrated with base, the following results were obtained: Plot the results of this titration and determine the pK a of the weak acid from your graph.arrow_forwardAnswers to all problems are at the end of this book. Detailed solutions are available in the Student Solutions Manual, Study Guide, and Problems Book. (Research Problem) The Nature and Roles of Linear Motifs in Proteins In addition to domains and modules, there are other significant sequence patterns in proteins—known as linear motifs—that are associated with a particular function. Consult the biochemical literature to answer the following questions: 1. What are linear motifs? 2. How are they different from domains?. 3. What are their functions? 4. How can they be characterized? 5. There are several papers that are good starting points for this problem. Neduva, V., and Russell, R., 2005. Linear motifs: evolutionary interaction switches. FEBS Letters 579:3342-3345. Gibson, T., 2009. Cell regulation: determined to signal discrete cooperation. Trends in Biochemical Sciences 34:471-482. Diella, K. Haslam, N., Chica., C. et aL, 2009. Understanding eukaryotic linear motifs and their role in cell signaling and regulation. Frontiers of Bioscience 13:6580-6603.arrow_forward
- Answers to all problems are at the end of this book. Detailed solutions are available in the Student Solutions Manual, Study Guide, and Problems Book. Draw all the possible isomers of threonine and assign (R,S) nomenclature to each.arrow_forwardAnswers to all problems are at the end of this book. Detailed solutions are available in the Student Solutions Manual, Study Guide, and Problems Book. Writing Dissociation Equations for Amino Acids Write equations fur the ionic dissociations of alanine, glutamate, histidine, lysine, and phenylalanine.arrow_forwardAnswers to all problems are at the end of this book. Detailed solutions are available in the Student Solutions Manual, Study Guide, and Problems Book. Exploring the Dimensions of the α-Helix and Coiled Coils Imagine that the dimensions of the alpha helix were such that there were exactly 3.5 amino acids per turn instead of 3.6. What would be the consequences for coiled-coil structures?arrow_forward
- Answers to all problems are at the end of this book. Detailed solutions are available in the Student Solutions Manual, Study Guide, and Problems Book. To fully appreciate the elements of secondary structure in proteins, it is useful to have a practical sense of their structures. On a piece of paper, draw a simple but large zigzag pattern to represent a -strand. Then fill in the structure, drawing the locations of the moms of the chain on this zigzag pattern. Then draw a simple, large coil on a piece of paper to represent an -helix. Then fill in the structure, drawing the backbone atoms in the correction locations along the coil and indicating the locations of the R groups in your drawing.arrow_forwardAnswers to all problems are at the end of this book. Detailed solutions are available in the Student Solutions Manual, Study Guide, and Problems Book. Oligonucleotide Structure Draw the chemical structure of pACG.arrow_forwardAnswers to all problems are at the end of this book. Detailed solutions are available in the Student Solutions Manual, Study Guide, and Problems Book. Using Graphical Methods to Derive the Kinetic Constants for an Ordered, Single-Displacement Reaction The general rate equation for an ordered, single-displacement reaction where A is the leading substrate is v=Vmax[ A ][ B ](KsAKmB+KmA[ B ]+KmB[ A ]+[ A ][ B ])Write the Lineweaver-Burk (double-reciprocal) equivalent of this equation and from it calculate algebraic expressions for the following: a. The slope b. The y-intercepts c. The horizontal and vertical coordinates of the point of intersection when 1/v is plotted versus 1/[B] at various fixed concentrations of Aarrow_forward
- BiochemistryBiochemistryISBN:9781305577206Author:Reginald H. Garrett, Charles M. GrishamPublisher:Cengage Learning