Concept explainers
(a)
To draw: A diagram showing what a head-antibody-myosin complex might look like at the molecular level.
Introduction:
Antibodies are the Y-shaped proteins which provide immunity to the body by neutralizing antigens such as bacteria and virus. They are also known as immunoglobulins. An antigen is a foreign particle that induces the production of antibodies. These protein structures are the three-dimensional arrangement of atoms in a peptide chain.
(b)
To determine: The reason for the requirement of ATP for the beads to move along the actin fibers.
Introduction:
Adenosine triphosphate (ATP) is the energy currency of the cells that are produced during glucose
(c)
To determine: The reason for the failure of experiment if antibodies used were bound to the part of S1 and, if antibodies were bound to actin.
Introduction:
Myosins are the muscle proteins that carry out the muscle contraction and provide a wide range of motility in humans and other animals. Myosin proteins are known to interact with the actin fibers for motility processes. Antibodies are the Y-shaped proteins which provide immunity to the body by neutralizing antigens such as bacteria ad virus.
(d)
To determine: Why might trypsin attack the specific single peptide bond first rather than other peptide bonds in myosin.
Introduction:
Heavy meromyosin (HMM) and short heavy meromyosin (SHMM) are the two products of the digestion of the meromyosin. Meromyosin proteins can be digested by using trypsin in the process called proteolysis. Meromyosin is a part of the myosin protein These together form the muscle fiber called sacromere.
(e)
To determine: The model (S1 or hinge) that is consistent with the results observed in subpart (d).
Introduction:
The S1 fragment in the myosin acts as a motor domain and is involved in the contraction of the muscle. Hinge region is the region where cleavage with papain separates the immunoglobulin in two portions Fab (antigen-binding) portion and Fc (crystallizable fragment). Thehe region where they get separated known as hinge region.
(f)
To provide: A possible explanation for the increased speed of the beads with increasing myosin density.
Introduction:
The beads that are involved in the bead-antibody-myosin complexes are coated with the myosin and move along with the actin fiber that are associated with the myosin. Myosins are the muscle proteins that carry out the muscle contraction and provide a wide range of motility in humans and other animals.
(g)
To provide: A possible explanation for the plateauing of the speed of the beads at high myosin density.
Introduction:
Myosins are the muscle proteins that carry out the muscle contraction and provide a wide range of motility in humans and other animals. The beads that are involved in the bead-antibody-myosin complexes are coated with the myosin and move along with the actin fiber that are associated with the myosin.
(h)
To determine: The reason why SHMM was still capable of moving beads along the actin fibers.
Introduction:
Short heavy meromyosin (SHMM) and heavy meromyosin (HMM) is a product of digestion of meromyosin by the trypsin enzyme. Meromyosin is part of the myosin protein. Myosin is the muscle protein that along with actin involved in the muscle contraction.
(i)
To provide: A suitable explanation of the protein that remains intact and functional even though the polypeptide backbone has been cleaved and is no longer continuous.
Introduction:
Proteins are the
Want to see the full answer?
Check out a sample textbook solutionChapter 5 Solutions
Lehninger Principles Of Biochemistry 7e & Study Guide And Solutions Manual For Lehninger Principles Of Biochemistry 7e
- Kranse et. al. measured the temperature dependence of conductance using membranescontaining the phospholipids glyceryl dipalmitate and glyceryl distearate. Describe themodifications in membrane content that you would employ to: (a) shift the temperature of the phase transition (b) make the ion conductance curve for valinomycin andnonactin more like that of gramicidinarrow_forwardObtain the sequence for the 5-HT receptor HTR1A and generate a hydropathy plot usingthe ExPASY tool ProtScale, the appropriate window, and the Kyte-Doolittle weightingalgorithm. How many transmembrane domains are present in this receptor? Attach yourhydropathy plot to your assignment.arrow_forwardCompare and contrast the structural features of the ion carrier valinomycin with those of achannel former like gramicidin. How does structural information help explain the mechanismby which these molecules conduct ions across membranes?arrow_forward
- A typical integral membrane protein has a stretch (or stretches) of ~20 hydrophobic aminoacids that form an α-helix that spans the bilayer (as is found in membrane proteins such asglycophorin A and bacteriorhodopsin). Compare and contrast the molecular and structural features of gramicidin with a membrane-spanning α-helix. Explain how gramicidin can forman ion channel when a typical membrane-spanning α-helix cannot (eg, glycophorin A).arrow_forwardThe titration curve of alanine shows the ionization of two functional groups with pK values of 2.34 and 9.69, corresponding to the ionization of the carboxyl and the protonated amino groups, respectively. The titration of di-, tri-, and larger oligopeptides of alanine also shows the ionization of only two functional groups, although the experimental pK values are different. The table summarizes the trend in pK values. Amino acid or peptide Ala Ala-Ala pKj pk₂ 2.34 9.69 3.12 8.30 Ala-Ala-Ala 3.39 8.03 Ala-(Ala)-Ala, n ≥ 4 3.42 7.94 Modify the molecules to show the oligopeptide Ala-Ala-Ala. You can modify the molecules by moving, adding, deleting, or changing atoms, bonds, or charges. C Select c Draw Templates More H с N 0 S Cl H H | | || H CH3 H CH, H CH₂ Complete the statements about the the pK, values of the Ala-Ala-Ala oligopeptide. The pK₁ value of 3.39 is associated with the -COO group of Ala-Ala-Ala. The pK2 value of 8.03 is associated with the -NH group of Ala-Ala-Ala. Erase Q2 Q…arrow_forwardFacts from the bacterium mals and to dept kan apa in a peptide with antidic properties. This peptide complex with the call membrance of other hacterial species, leading in bacterial death The structure of the peptide has been determined from (a) Cmplete acid hydes of the peptide, followed by amino acid analys, yielded quiar anunt of Lan, Om, Pfx, Prxa, and Wall Cmtiti, an amino acid od prosentin pockets but present in some peptides. Com has the tracture H *H,N-CH-CH-CH, -C- COO (b) The weight of the peptide in approximately 1,200 Th (c) The peptide failed to undergo hydrolysis when treated with the Hydrolysis of the carbonyl-terminal residue of a polypeptide une "NH, the year. This call there Pro or the police does not contain a froz (d) Treatment of the peptide with 1-haw-2,4-dicherer (11N1), followed by complete hydrolysis and ched only from and the derivative NO, Н ON NHCHI CH, CH, C coo +NH, (Hint: The 2,4-diphenyl derivative involves the amino group of a side chain rather than the…arrow_forward
- Electrophoresis Macmillan Learning Chymotrypsin is a protease with a molecular mass of 25.6 kDa. The figure shows a stained SDS polyacrylamide gel with a single band in lane I and three bands of lower molecular weight in lane 2. Lane I contains a preparation of chymotrypsin and lane 2 contains chymotrypsin pre-treated with performic acid. 1 2 Why does performic acid treatment of chymotrypsin generate three bands in lane 2? ° Chymotrypsin self-digests on the carboxyl-terminal side of phenylalanine, tryptophan, or tyrosine residues. The three peptides are impurities in the original chymotrypsin sample. Performic acid cleaves proteins on the carboxyl-terminal side of lysine and arginine residues. Performic acid cleaves the disulfide bonds holding together the three subunits of chymotrypsin. Correct Answerarrow_forwardExtracts from the bacterium Bacillus brevis contain a peptide with antibiotic properties. This peptide forms complexes with metal ions and seems to disrupt ion transport across the cell membranes of other bacterial species, leading to bacterial death. The structure of the peptide has been determined from a series of observations. (a) Complete acid hydrolysis of the peptide, followed by amino acid analysis, yielded equimolar amounts of Leu, Orn, Phe, Pro, and Val. Orn is ornithine, an amino acid not present in proteins but present in some peptides. Orn has the structure H 'H,N-CH, - CH2 CH2 CH2 - C - COO- NH, (b) The molecular weight of the peptide is approximately 1,200 Da. (c) The peptide failed to undergo hydrolysis when treated with the enzyme carboxypeptidase. This enzyme catalyzes the hydrolysis of the carboxyl-terminal residue of a polypeptide unless the residue is Pro or the peptide does not contain a free carboxyl group. (d) Treatment of the intact peptide with…arrow_forwardAt a pH equal to the isoelectric point (pl) of alanine, the net charge of alanine is zero. Two structures can be drawn that have a net charge of zero, but the predominant form of alanine at its pl is zwitterionic. CH3 H,N CH3 ** H¸N-C H Zwitterionic H Uncharged OH Select statements that explain why alanine is predominantly zwitterionic at its pl. pk of alanine's amino group is more than its pl. pk of alanine's carboxyl group is more than its pl. PK of alanine's carboxyl group is less than its pl. pk of alanine's amino group is less than its pl. Correct Answer What fraction of alanine is in the completely uncharged form at its pl? 1 in 2.2 × 107 1 in 1.6 × 10² 1 in 4680 1 in 9460arrow_forward
- How does a voltage-gated sodium channel work? Specifically, how and why does a change in voltage trigger their opening? Please be detailedarrow_forwardWhen sodium ions enter a neuron during depolarization, they trigger the opening of additional voltage-gated sodium channels nearby, creating a positive feedback loop where the influx of sodium ions further depolarizes the membrane, causing even more sodium channels to open and allowing more sodium ions to enter the cell, thus sustaining the depolarization process until the action potential peaks. But how and why exactly does the influx of sodium ions trigger more sodium channels to let in more sodium? Please explainarrow_forwardDraw the chemical structure of the tripeptide, HEL (L - amino acids), at pH = 7.0. Calculate isoelectric pointarrow_forward
- BiochemistryBiochemistryISBN:9781319114671Author:Lubert Stryer, Jeremy M. Berg, John L. Tymoczko, Gregory J. Gatto Jr.Publisher:W. H. FreemanLehninger Principles of BiochemistryBiochemistryISBN:9781464126116Author:David L. Nelson, Michael M. CoxPublisher:W. H. FreemanFundamentals of Biochemistry: Life at the Molecul...BiochemistryISBN:9781118918401Author:Donald Voet, Judith G. Voet, Charlotte W. PrattPublisher:WILEY
- BiochemistryBiochemistryISBN:9781305961135Author:Mary K. Campbell, Shawn O. Farrell, Owen M. McDougalPublisher:Cengage LearningBiochemistryBiochemistryISBN:9781305577206Author:Reginald H. Garrett, Charles M. GrishamPublisher:Cengage LearningFundamentals of General, Organic, and Biological ...BiochemistryISBN:9780134015187Author:John E. McMurry, David S. Ballantine, Carl A. Hoeger, Virginia E. PetersonPublisher:PEARSON