(a)
Interpretation:
Enthalpy of formation of Calcium chloride has to be calculated by using Born-Haber cycle.
Concept Introduction:
Born-Haber cycle:
The enthalpy of formation of ionic crystals are calculated by addition of enthalpies of atomization, ionization, affinity and lattice enthalpy, it is given by Born-Haber so it is called as Born-Haber cycle.
(a)
Explanation of Solution
Enthalpy of formation of Calcium chloride is calculated as,
Hence, the enthalpy of formation of Calcium chloride is
(b)
Interpretation:
The enthalpy change of
Concept Introduction:
Hess's Law:
The enthalpy change of given reaction is calculated by subtraction of sum of enthalpy of formation reactants from sum of enthalpy of formation reactant products.
(b)
Explanation of Solution
The enthalpy change of given reaction is calculated as,
Substitute the standard and calculated values in below equation to get enthalpy change of given reaction.
Hence, the enthalpy change of given reaction is
(c)
Interpretation:
Reason for the stability of is
Concept Introduction:
Refer part (a).
(c)
Explanation of Solution
In part (b), is
The stability is higher from the lower energy product so
Hence, the
Want to see more full solutions like this?
Chapter 5 Solutions
Chemistry: The Molecular Science
- The reaction of quicklime, CaO, with water produces slaked lime, Ca(OH)2, which is widely used in the construction industry to make mortar and plaster. The reaction of quicklime and water is highly exothermic: CaO(s)+H2O(l)Ca(OH)2(s)H=350kJmol1 (a) What is the enthalpy of reaction per gram of quicklime that reacts?. (b) How much heat, in kilojoules, is associated with the production of 1 ton of slaked lime?arrow_forwardWhat is meant by the term lower in energy? Which is lower in energy, a mixture of hydrogen and oxygen gases or liquid water? How do you know? Which of the two is more stable? How do you know?arrow_forwardThe thermochemical equation for the burning of methane, the main component of natural gas, is CH4(g)+2O2(g)CO2(g)+2H2O(l)H=890kJ (a) Is this reaction endothermic or exothermic? (b) What quantities of reactants and products are assumed if H = 890 kJ? (c) What is the enthalpy change when 1.00 g methane burns in an excess of oxygen?arrow_forward
- Explain the decomposition of nitroglycerin in terms of relative bond enthalpies.arrow_forwardConsider the reactions of silver metal, Ag(s), with each of the halogens: fluorine, F2(g), chlorine, Cl2(g), and bromine, Br2(l). What chapter data could you use to decide which reaction is most exothermic? Which reaction is that?arrow_forwardUse a Born-Haber cycle (Sec. 5-13) to calculate the lattice energy of MgF2 using these thermodynamic data. Compare this lattice energy with that of SrF2, −2496 kJ/mol. Explain the difference in the values in structural terms.arrow_forward
- The equation for the fermentation of glucose to alcohol and carbon dioxide is: C6H12O6(aq) 2C2H5OH(aq) + 2CO2(g) The enthalpy change for the reaction is 67 kJ. Is this reaction exothermic or endothermic? Is energy, in the form of heat, absorbed or evolved as the reaction occurs?arrow_forwardThe heat of neutralization, Hneut, can be defined as the amount of heat released (or absorbed), q, per mole of acid (or base) neutralized. Hneut for nitric acid is -52 kJ/mol HNO3. At 27.3C, 50.00 mL of 0.743M HNO3 is neutralized by 1.00 M Sr(OH)2 in a coffee-cup calorimeter. (a) How many mL of Sr(OH)2 were used in the neutralization? (b) What is the final temperature of the resulting solution? (Use the assumptions in Question 11.)arrow_forwardFrom the data given in Appendix I, determine the standard enthalpy change and the standard free energy change for each of the following reactions: (a) BF3(g)+3H2O(l)B(OH)3(s)+3HF(g) (b) BCl3(g)+3H2O(l)B(OH)3+3HCl(g) (c) B2H6(g)+6H2O(l)2B(OH)3(s)+6H2(g)arrow_forward
- When boron hydrides burn in air, the reactions are very exothermic (a) Write a balanced equation for the combustion of B5H9(g) in air to give B2O3(s) and H2O(g). (b) Calculate the enthalpy of combustion for B5H9(g) (fH = 73.2 kJ/mol), and compare it with the enthalpy of combustion of B2H6 (2038 kJ/mol). (The enthalpy of formation of B2O3(s) is 1271.9 kJ/mol.) (c) Compare the enthalpy of combustion of C2H6(g) with that of B2H6(g). Which transfers more energy as heat per gram?arrow_forwardThe Ostwald process for the commercial production of nitric acid from ammonia and oxygen involves the following steps: 4NH3(g)+5O24NO(g)+6H2O(g)2NO(g)+O2(g)2NO2(g)3NO2(g)+H2O(l)2HNO3(aq)+NO(g) a. Use the values of Hf in Appendix 4 to calculate the value of H for each of the preceding reactions. b. Write the overall equation for the production of nitric acid by the Ostwald process by combining the preceding equations. (Water is also a product.) Is the overall reaction exothermic or endothermic?arrow_forwardConsider the following reaction: 2SO2(g) + O2(g) → 2SO3(g) ΔrH° = –198 kJ/mol Calculate the energy change associated with 43.8 g of SO2 reacting with excess O2. Express your answer to three significant figures.arrow_forward
- Chemistry: The Molecular ScienceChemistryISBN:9781285199047Author:John W. Moore, Conrad L. StanitskiPublisher:Cengage LearningChemistry: Principles and PracticeChemistryISBN:9780534420123Author:Daniel L. Reger, Scott R. Goode, David W. Ball, Edward MercerPublisher:Cengage LearningGeneral Chemistry - Standalone book (MindTap Cour...ChemistryISBN:9781305580343Author:Steven D. Gammon, Ebbing, Darrell Ebbing, Steven D., Darrell; Gammon, Darrell Ebbing; Steven D. Gammon, Darrell D.; Gammon, Ebbing; Steven D. Gammon; DarrellPublisher:Cengage Learning
- Chemistry & Chemical ReactivityChemistryISBN:9781337399074Author:John C. Kotz, Paul M. Treichel, John Townsend, David TreichelPublisher:Cengage LearningChemistryChemistryISBN:9781305957404Author:Steven S. Zumdahl, Susan A. Zumdahl, Donald J. DeCostePublisher:Cengage LearningChemistry: An Atoms First ApproachChemistryISBN:9781305079243Author:Steven S. Zumdahl, Susan A. ZumdahlPublisher:Cengage Learning