Fluid Mechanics: Fundamentals and Applications
4th Edition
ISBN: 9781259877827
Author: CENGEL
Publisher: MCG
expand_more
expand_more
format_list_bulleted
Textbook Question
Chapter 5, Problem 143P
Using a handheld bicycle pump to generate an air jet, a soda can as the water reservoir, and a straw as the tube, design and build an atomizer. Study the effects of various parameters such as the tube length, the diameter of the exit hole, and the pumping speed on performance.
Expert Solution & Answer
Want to see the full answer?
Check out a sample textbook solutionStudents have asked these similar questions
Answer the problem correctly and provide complete and readable solutions. If you can explain the process (briefly), please do so. Thank you!
Sketch and discuss in great detail the different pump curves including supply curve, system curve and efficiency curve.
[5] A Francis turbine operates at its maximum efficiency point at h0 = 0.94, corresponding to a power specific speed of 0.9 rad. The effective head across the turbine is 160 m and the speed required for electrical generation is 750 rev/min. The runner tip speed is 0.7 times the spouting velocity, the absolute flow angle at runner entry is 70 deg from the radial direction and the absolute flow at runner exit is without swirl. Assuming there are no losses in the guide vanes and the mechanical efficiency is 100%, determine (i) the turbine power and the volume flow rate; (ii) the runner diameter; (iii) the magnitude of the tangential component of the absolute velocity at runner inlet; (iv) the axial length of the runner vanes at inlet.
Chapter 5 Solutions
Fluid Mechanics: Fundamentals and Applications
Ch. 5 - Does the amount of mass entering a control volume...Ch. 5 - Define mass and volume flow rates. How are they...Ch. 5 - Name four physical quantities that are conserved...Ch. 5 - When is the flow through a control volume steady?Ch. 5 - Consider a device with one inlet and one outlet....Ch. 5 - A hair dryer is basically a duct of constant...Ch. 5 - A garden hose attached with a nozzle is used to...Ch. 5 - Air whose density is 0.082 Ibm/ft3 enters the duct...Ch. 5 - A 0.7$-m3 rigid tank initially contains air whose...Ch. 5 - Consider the flow of an incompressible Newtonian...
Ch. 5 - A desktop computer is to be cooled by a fan whose...Ch. 5 - The minimum fresh air requirement of a residential...Ch. 5 - The ventilating fan of the bathroom of a building...Ch. 5 - Air enters a nozzle steadily at 2.21 kg/m3 and 20...Ch. 5 - Air at 40°C flow steadily through the pipe shown...Ch. 5 - In climates with low night-time temperatures, an...Ch. 5 - What is mechanical energy? How does it differ from...Ch. 5 - Define turbine efficiency, generator efficiency,...Ch. 5 - What is mechanical efficiency? What does a...Ch. 5 - How is the combined pump-motor efficiency of a...Ch. 5 - Prob. 21PCh. 5 - A differential thermocouple with sensors at the...Ch. 5 - Electric power is to be generated by installing a...Ch. 5 - Consider a river flowing toward a lake at an...Ch. 5 - Express the Bernoulli equation in three different...Ch. 5 - What are the three major assumptions used in the...Ch. 5 - Define static, dynamic, and hydrostatic pressure....Ch. 5 - What is streamwise acceleration? How does it...Ch. 5 - What is stagnation pressure? Explain how it can be...Ch. 5 - Define pressure head, velocity head, and elevation...Ch. 5 - How is the location of the hydraulic grade line...Ch. 5 - Prob. 33CPCh. 5 - What is the hydraulic grade line? How does it...Ch. 5 - A glass manometer with oil as the working fluid is...Ch. 5 - The velocity of a fluid flowing in a pipe is to be...Ch. 5 - The water level of a tank on a building roof is 20...Ch. 5 - Prob. 38CPCh. 5 - Prob. 39CPCh. 5 - In a hydroelectric power plant, water enters the...Ch. 5 - A Pitot-static probe is used to measure the speed...Ch. 5 - The air velocity in the duct of a heating system...Ch. 5 - A piezometer and a Pitot tube are tapped into a...Ch. 5 - The diameter of a cylindrical water tank is D0and...Ch. 5 - A siphon pumps water from a large reservoir to a...Ch. 5 - Water flows through a horizontal pipe at a rate of...Ch. 5 - An airplane is flying at an altitude of 10.500 m....Ch. 5 - While traveling on a dirt road, the bottom of a...Ch. 5 - The water in an 8-rn-diameter, 3-rn-high...Ch. 5 - Reconsider Prob. 5-49. Determine how long it will...Ch. 5 - Air at 105 kPa and 37°C flows upward through a...Ch. 5 - Water at 20°C is siphoned from a reservoir as...Ch. 5 - The water pressure in the mains of a city at a...Ch. 5 - A pressurized tank of water has a 10-cm-diameter...Ch. 5 - Air is flowing through a venturi meter whose...Ch. 5 - The water level in a tank is 20 m above the...Ch. 5 - The air velocity in a duct is measured by a...Ch. 5 - In cold climates, water pipes may freeze and burst...Ch. 5 - Prob. 61PCh. 5 - A fluid of density and viscosity flows through a...Ch. 5 - What is the minimum diameter at section (1) to...Ch. 5 - What is irreversible head loss? How is it related...Ch. 5 - What is useful pump head? How is it related to the...Ch. 5 - Consider the steady adiabatic flow of an...Ch. 5 - Consider the steady adiabatic flow of an...Ch. 5 - What is the kinetic energy correction factor? Is...Ch. 5 - The water level in a tank is 20 m above the...Ch. 5 - A 3-rn-high tank filled with water has a discharge...Ch. 5 - A person is filling a knee-high bucket with water...Ch. 5 - Tater is being pumped from a large lake to a...Ch. 5 - A 15-hp (shaft) pump is used to raise water to a...Ch. 5 - Water flows at a rate of 0.040 m3/s in a...Ch. 5 - The water level in a tank is 20 m above the...Ch. 5 - A hydraulic turbine has 50 m of head available at...Ch. 5 - In a hydroelectric power plant, water flows from...Ch. 5 - Reconsider Prob. 5-78E. Determine the flow rate of...Ch. 5 - A fan is to be selected to ventilate a bathroom...Ch. 5 - Water flows at a rate of 20 L/s through a...Ch. 5 - The water level in a tank is 34 ft above the...Ch. 5 - A large tank is initially filled with water 4 m...Ch. 5 - Water enters a hydraulic turbine through a...Ch. 5 - A 78-percent efficient 12-hp pump is pumping water...Ch. 5 - Water is pumped from a lower reservoir to a higher...Ch. 5 - Water in a partially filled large tank is to be...Ch. 5 - Underground water is to be pumped by a 78 percent...Ch. 5 - Reconsider Prob. 5-88. Determine the flow rate of...Ch. 5 - The velocity profile for turbulent flow in a...Ch. 5 - The demand for electric power is usually much...Ch. 5 - Prob. 92PCh. 5 - Consider a fully filled hemisphere shaped tank...Ch. 5 - The velocity of a liquid flowing in a circular...Ch. 5 - Air at 250 kgrn3 enters a nozzle that has an...Ch. 5 - The air in a 5m5-m3-m hospital room is to be...Ch. 5 - The water level in a tank is 70 ft above the...Ch. 5 - A pressurized 2-rn-diameter tank of water has a...Ch. 5 - Underground water is being pumped into a pool...Ch. 5 - Prob. 100PCh. 5 - A very large tank contains air at 102 kPa at a...Ch. 5 - Water is flowing through a Venturi meter whose...Ch. 5 - Water flows at a rate of 0.011 m3/s in a...Ch. 5 - Air flows through a pipe at a rate of 120 L/s. The...Ch. 5 - A 3-rn-high large tank is initially filled with...Ch. 5 - Reconsider Prob. 5-105. In order to dram the tank...Ch. 5 - A D0= 1 2-rn-diameter tank is initially filled...Ch. 5 - An oil pump is drawing 18 kW of electric power...Ch. 5 - A wind tunnel draws atmospheric air at 20°C and...Ch. 5 - Consider a spherical tank containing compressed...Ch. 5 - A tank with openings 1,2, and 3 is moving to left...Ch. 5 - Two dimensionally identical containers are...Ch. 5 - A circular thin plate is placed on the top of a...Ch. 5 - A pump-storage plant uses a turbine to generate...Ch. 5 - A diffuser in a pipe flow is basically a slow...Ch. 5 - Prob. 117PCh. 5 - Prob. 118PCh. 5 - Prob. 119PCh. 5 - Air enters a steady-flow compressor at 1 atm and...Ch. 5 - A 7$-m-high water body that is open to the...Ch. 5 - Prob. 122PCh. 5 - Prob. 123PCh. 5 - A hydraulic turbine is used to generate power by...Ch. 5 - The efficiency of a hydraulic turbine-generator...Ch. 5 - Which one is not an assumption involved with the...Ch. 5 - Consider incompressible, frictionless flow of a...Ch. 5 - Consider incompressible, frictionless flow of...Ch. 5 - Consider water flow in a piping network. The...Ch. 5 - The static and stagnation pressures of a fluid in...Ch. 5 - The static and stagnation pressures of a fluid in...Ch. 5 - The difference between the heights of energy grade...Ch. 5 - Water at 120 kPa (gage) is flowing in a horizontal...Ch. 5 - Water is withdrawn a the bottom of a large tank...Ch. 5 - Water at 80 kPa (gage) enters a horizontal pipe at...Ch. 5 - Liquid ethanol (p = 783 kg/m3) at a pressure of...Ch. 5 - Seawater is to be pumped into a large tank at a...Ch. 5 - An adiabatic pump is used to increase the pressure...Ch. 5 - The shaft power from a 90 percent-efficient...Ch. 5 - Using a 1are bucket whose volume is known and...Ch. 5 - Your company is setting up an experiment that...Ch. 5 - Computer-aided designs, the use of better...Ch. 5 - Using a handheld bicycle pump to generate an air...Ch. 5 - Using a flexible drinking straw and a ruler,...Ch. 5 - The power generated by a wind turbine is...
Knowledge Booster
Learn more about
Need a deep-dive on the concept behind this application? Look no further. Learn more about this topic, mechanical-engineering and related others by exploring similar questions and additional content below.Similar questions
- Some engineers are evaluating potential sites for a small hydroelectric dam. At one such site, the gross head is 340 m, and they estimate that the volume flow rate of water through each turbine would be 0.95 m3 /s. Estimate the ideal power production per turbine in MW.arrow_forwardA small centrifugal pump is used to deliver 0.005 m3/s of water to level 2 as shown in Fig. 2. Neglecting the losses, determine the required power input to the pump if its efficiency is equal to 70%.arrow_forwardA power plant requires 940 L/min of water. The required net head is 5 m at this flow rate. An examination of pump performance curves indicates that two centrifugal pumps with different impeller diameters can deliver this flow rate. The pump with an impeller diameter of 203 mm has a pump efficiency of 73 percent and delivers 10 m of net head. The pump with an impeller diameter of 111 mm has a lower pump efficiency of 67 percent and delivers 5 m of net head. What is the ratio of the required brake horse power (bhp) of the pump with 203-mm-diameter impeller to that of the pump with 111-mm-diameter impeller? (a) 0.45 (b) 0.68 (c) 0.86 (d) 1.84 (e) 2.11arrow_forward
- a. Calculate the mass flow rate in lb/min. b. Calculate the speed at section 2 in ft/min or fpmarrow_forwardFor each statement, choose whether the statement is true or false, and discuss your answer briefly: (a) If the rpm of a pump is doubled, all else staying the same, the capacity of the pump goes up by a factor of about 2. (b) If the rpm of a pump is doubled, all else staying the same, the net head of the pump goes up by a factor of about 2. (c) If the rpm of a pump is doubled, all else staying the same, the required shaft power goes up by a factor of about 4. (d) If the rpm of a turbine is doubled, all else staying the same, the output shaft power of the turbine goes up by a factor of about 8.arrow_forwardA single pump and system have characteristics as shown on the graph below. Based on this information, estimate: (a) The flow rate with one pump online. (b) The flow rate if the pump's speed is doubled (c) The flow rate of two identical pumps operating in parallel (original pump speeds) (d) The flow rate of two identical pumps operating in series (original pump speed) (e) The flow rate if the system's static head doubles (f) Pump head (original system) if a valve is opened until the flow rate is 5.5 cfs 350 300 250 200 150 100 50 2 4 6. 8 10 12 Flow Rate (cfs) ·hp(req) •hp(avai) Head (ft)arrow_forward
- PROBLEM 02: Water entering a pump through an 200mm diameter pipe at 27.6 kPa has a flow rate of 0.1 m^3/s. It leaves the pump through a 100mm diameter pipe at 103.4 kPa. Assuming that the suction and discharge sides of the pump are at the same elevation, find the horsepower delivered to the water by the pump (746 watts = 1 HP). Illustrate the problem and show your complete solution.arrow_forwardA centrifugal pump operating under steady flow conditions delivers [2000 + (162/10)] kg/min of water from an initial pressure of [100 + (162/2)] kPa to a final pressure of [1000 + 2(162)] Pa. The diameter of the inlet pipe to the pump is 20 cm and the diameter of the discharge pipe is 8 cm. Neglect change in potential, kinetic and internal energies. What is the work done of the pump?arrow_forwardA steady stream of n-butanol is needed to be fed into the reactor at 40 ̊C. However, the inlet of the reactor is located 7.5 m above the reservoir tank. As such, a highly effective centrifugal pump (70% efficiency) is used for such a purpose. It was understood that the needed volumetric flow rate into the reactor is fixed at 20 m3/h. It was also noted that the n-butanol reservoir is closed but not pressurized, while the gauge pressure at the endof the discharge line is measured at 275 kPa. Given that the density of n-butanol is 810kg/m3. If the discharge pipeline was 5 cm in diameter, calculate: (i) The velocity of n-butanol at the discharge line. (ii) The total power input from the centrifugal pump. (iii) The power delivered to the n-butanol fluid.arrow_forward
- Derive an expression for the blade efficiency in reaction turbine that has four stages by means of flow and blade velocities with exit and entrance angles of moving blades if: the nozzle angle equal to twice the exit angle of moving blade, while the outlet relative velocity is equal to absolute velocity.If the efficiency of any stage is 90%, what is the total efficiency of this turbinearrow_forward1.) A Pelton wheel with a needle-controlled nozzle develops 1 050 kW against a gross head of 300 m. The loss of head due to friction in the pipeline and the nozzle is 60 xV. where is the flow rate in m³/s. Assuming that the overall efficiency of the wheel remains constant at 83%, determine the percentage reduction in flow rate required when the power developed is reduced to 710 kW by closing a valve on the pipeline partially.arrow_forwardA 10-hectare rice land is to be irrigated at the peak water requirement of 10 mm/day. The source of water is pump from a river with outlet discharge directly to the irrigation canal. If the pump operates at 10 hours per day, what should be the capacity of the pump? What should be the size of engine if the total dynamic head is 10 meters. Assume pump efficiency to be 80 percent and engine to be 75 percent.arrow_forward
arrow_back_ios
SEE MORE QUESTIONS
arrow_forward_ios
Recommended textbooks for you
- Elements Of ElectromagneticsMechanical EngineeringISBN:9780190698614Author:Sadiku, Matthew N. O.Publisher:Oxford University PressMechanics of Materials (10th Edition)Mechanical EngineeringISBN:9780134319650Author:Russell C. HibbelerPublisher:PEARSONThermodynamics: An Engineering ApproachMechanical EngineeringISBN:9781259822674Author:Yunus A. Cengel Dr., Michael A. BolesPublisher:McGraw-Hill Education
- Control Systems EngineeringMechanical EngineeringISBN:9781118170519Author:Norman S. NisePublisher:WILEYMechanics of Materials (MindTap Course List)Mechanical EngineeringISBN:9781337093347Author:Barry J. Goodno, James M. GerePublisher:Cengage LearningEngineering Mechanics: StaticsMechanical EngineeringISBN:9781118807330Author:James L. Meriam, L. G. Kraige, J. N. BoltonPublisher:WILEY
Elements Of Electromagnetics
Mechanical Engineering
ISBN:9780190698614
Author:Sadiku, Matthew N. O.
Publisher:Oxford University Press
Mechanics of Materials (10th Edition)
Mechanical Engineering
ISBN:9780134319650
Author:Russell C. Hibbeler
Publisher:PEARSON
Thermodynamics: An Engineering Approach
Mechanical Engineering
ISBN:9781259822674
Author:Yunus A. Cengel Dr., Michael A. Boles
Publisher:McGraw-Hill Education
Control Systems Engineering
Mechanical Engineering
ISBN:9781118170519
Author:Norman S. Nise
Publisher:WILEY
Mechanics of Materials (MindTap Course List)
Mechanical Engineering
ISBN:9781337093347
Author:Barry J. Goodno, James M. Gere
Publisher:Cengage Learning
Engineering Mechanics: Statics
Mechanical Engineering
ISBN:9781118807330
Author:James L. Meriam, L. G. Kraige, J. N. Bolton
Publisher:WILEY
Power Plant Explained | Working Principles; Author: RealPars;https://www.youtube.com/watch?v=HGVDu1z5YQ8;License: Standard YouTube License, CC-BY