CHEMISTRY THE CENTRAL SCIENCE >EBOOK<
14th Edition
ISBN: 9780136873891
Author: Brown
Publisher: PEARSON
expand_more
expand_more
format_list_bulleted
Textbook Question
Chapter 5, Problem 124IE
The precipitation reaction between AgNO3(aq) and NaCl(aq) proceeds as follows:
AgNO3(aq) NaC1(aq)→NaNO3(aq) AgCl(s)
- By using data inAppendixC, calculate ΔH° for the net ionic equation of this reaction.
- What would you expect for the value of ΔH°of the overall molecular equation compared to that for the net ionic equation? Explain.
- Use the results from (a)and (b)along with data in Appendix C to determine the value of ΔH°ffor AgNO3(aq).
Expert Solution & Answer
Trending nowThis is a popular solution!
Chapter 5 Solutions
CHEMISTRY THE CENTRAL SCIENCE >EBOOK<
Ch. 5.2 - A mixture of gases A2 and B2 are introduced to a...Ch. 5.2 - Practice Exercise 2 Calculate the change in the...Ch. 5.3 - A solid sample of Zn(OH)2 is added to 0.350 L of...Ch. 5.3 -
Practice Exercise 2
Calculate the work, in J, if...Ch. 5.3 - Practice Exercise 1 A chemical reaction that gives...Ch. 5.3 - Prob. 5.3.2PECh. 5.4 - Prob. 5.4.1PECh. 5.4 - Prob. 5.4.2PECh. 5.5 - The coinage metals (Group 1B) copper, silver, and...Ch. 5.5 - Prob. 5.5.2PE
Ch. 5.5 - Practice Exercise 1 When 0.243 g of Mg metal is...Ch. 5.5 - Practical exercise 2 When 50.0 mL of 0.100MAgNO3...Ch. 5.5 - Prob. 5.7.1PECh. 5.5 - Practice Exercise 2 A 0.5865-g sample of lactic...Ch. 5.6 - Prob. 5.8.1PECh. 5.6 - Prob. 5.8.2PECh. 5.6 - Calculate H for the reaction C(s)+...Ch. 5.6 - Prob. 5.9.2PECh. 5.7 - Prob. 5.10.1PECh. 5.7 - Prob. 5.10.2PECh. 5.7 - Prob. 5.11.1PECh. 5.7 - Prob. 5.11.2PECh. 5.7 -
Practice Exercise 1
Given 2SO2(g) + 02(g) —>...Ch. 5.7 - Prob. 5.12.2PECh. 5.8 - Use the average bond enthalpies in Table 5.41to...Ch. 5.8 -
Use the average bond enthalpies in Table 5.4 to...Ch. 5.9 - Prob. 5.14.1PECh. 5.9 - Prob. 5.14.2PECh. 5 - One of the important ideas of thermodynamics is...Ch. 5 - Two positively charged spheres, each with a charge...Ch. 5 - SI The accompanying photo shows a pipevine...Ch. 5 - Consider the accompanying energy diagram. Does...Ch. 5 - The contents of the closed box in each of the...Ch. 5 - Imagine that you are climbing a mountain. Is the...Ch. 5 - The diagram shows four states of a system, each...Ch. 5 - You may have noticed that when you compress the...Ch. 5 - Imagine a container placed in a tub of water, as...Ch. 5 - In the accompanying cylinder diagram, a chemical...Ch. 5 - Prob. 10ECh. 5 - Consider the two diagrams that follow. Based on...Ch. 5 - Consider the conversion of compound A into...Ch. 5 - What is the electrostatic potential energy (in...Ch. 5 - What is the electrostatic potential energy (in...Ch. 5 - The electrostatic force (not energy) of attraction...Ch. 5 - Use the equations given in Problem 5.15 to...Ch. 5 - A sodium ion, Na+, with a charge of 1.6 x 10-19 C...Ch. 5 - A magnesium ion, Mg2+, with a charge of 3.2 x...Ch. 5 - Identify the force present and explain whether...Ch. 5 - Identify the force present and explain whether...Ch. 5 - Which of the following cannot leave or enter a...Ch. 5 - Prob. 22ECh. 5 - According to the first law of thermodynamics, what...Ch. 5 - Write an equation that expresses the first law of...Ch. 5 - Calculate AB and determine whether the process is...Ch. 5 - For the following processes, calculate the change...Ch. 5 - A gas is confined to a cylinder fitted with a...Ch. 5 - Consider a system consisting of two oppositely...Ch. 5 - What is meant by the term state function? Give an...Ch. 5 - Indicate which of the following is independent of...Ch. 5 - During a normal breath, our lungs expand about...Ch. 5 - How much work (in J) is involved in a chemical...Ch. 5 - Why is the change in enthalpy usually easier to...Ch. 5 - Under what condition will the enthalpy change of a...Ch. 5 - Assume that the following reaction occurs at...Ch. 5 - Suppose that the gas-phase reaction 2NO(g) + 02(g)...Ch. 5 - A gas is confined to a cylinder under constant...Ch. 5 - A gas is confined to a cylinder under constant...Ch. 5 - The complete combustion of ethanol, C2H5OH(l), to...Ch. 5 - The decomposition of Ca(OH)2(s) into CaO(s) and...Ch. 5 - Ozone, 03(9), is a form of elemental oxygen that...Ch. 5 -
5.42 Without referring to tables, predict which...Ch. 5 - Consider the following reaction: 2 Mg(s) + 02(g)2...Ch. 5 -
544 Consider the following reaction:
2...Ch. 5 - When solutions containing silver ions and chloride...Ch. 5 - At one time, a common means of forming small...Ch. 5 -
5.47 Consider the combustion of liquid methanol,...Ch. 5 -
5.48 Consider the decomposition of liquid...Ch. 5 - 5.49
a What are the units of molar heat...Ch. 5 - Two solid objects, A and B, are placed in boiling...Ch. 5 - What is the specific heat of liquid water? What is...Ch. 5 -
5.52
a. Which substance in Table 5.2 requires...Ch. 5 - The specific heat of octane, C8H18(l), is 2.22...Ch. 5 -
6.54 Consider the data about gold metal in...Ch. 5 - When a 6-50-g sample of solid sodium hydroxide...Ch. 5 -
5.56
a. When a 4 25-g sample of solid ammonium...Ch. 5 - A 2.200-g sample of quinone (C5H402) is burned in...Ch. 5 -
8.68 A 1.800-g sample of phenol (C6H5OH) was...Ch. 5 - Under constant-volume conditions, the heat of...Ch. 5 -
5.60 Under constant-volume conditions, the heat...Ch. 5 -
5.61 Can you use an approach similar to Hess's...Ch. 5 -
5.62 Consider the following hypothetical...Ch. 5 - Calculate the enthalpy change for the reaction...Ch. 5 - From the enthalpies of reaction calculate H for...Ch. 5 - From the enthalpies of reaction Calculate H for...Ch. 5 - Given the data use Hess's law to calculate H for...Ch. 5 -
5.67
What is meant by the term standard...Ch. 5 - S
5.68
What is the value of the standard enthalpy...Ch. 5 - For each of the following compounds, write a...Ch. 5 - Write balanced equations that describe the...Ch. 5 - The following is known as the thermite reaction:...Ch. 5 -
5.72 Many portable gas heaters and grills use...Ch. 5 - Using values from Appendix C , calculate the...Ch. 5 -
5.74 Using values from Appendix C, calculate the...Ch. 5 - Complete combustion of 1 mol of acetone (C2H6O)...Ch. 5 - Calcium carbide (CaC2) reacts with water to form...Ch. 5 -
5.77 Gasoline is composed primarily of...Ch. 5 - Prob. 78ECh. 5 - Ethanol (C2H5OH) is blended with gasoline as an...Ch. 5 -
5.80 Methanol (CH3OH) is used as a fuel in race...Ch. 5 -
5.81 Without doing any calculations, predict the...Ch. 5 -
5.82 Without doing any calculations, predict...Ch. 5 - Use bond enthalpies in Table 5.4 Q to estimate for...Ch. 5 - Use bond enthalpies in Table 5.40 to estimate for...Ch. 5 - Use enthalpies of formation given in Appendix C to...Ch. 5 -
5.86
The nitrogen atoms in an N2 molecule are...Ch. 5 -
5.87 Consider the reaction 2H(g) + O2(g) ...Ch. 5 -
5.88 Consider the reaction H2(g) + I2(s) ...Ch. 5 -
5.89
What is meant by the term fuel value?
Which...Ch. 5 -
5.90
Which releases the most energy when...Ch. 5 -
5.91
A serving of a particular ready-to-serve...Ch. 5 -
5.92 A pound of plain M&M® candies contains 96 g...Ch. 5 -
5.93 The heat of combustion of fructose,...Ch. 5 -
5.94 The heat of combustion of ethanol,...Ch. 5 -
5.95 The standard enthalpies of formation of...Ch. 5 -
5.98 It is interesting to compare the ‘fuel...Ch. 5 - At the end of 2012, global population was about...Ch. 5 -
5.98 The automobile fuel called E85 consists of...Ch. 5 - The air bags that provide protection in...Ch. 5 -
5.100 An aluminum can of a soft drink is placed...Ch. 5 -
5.101 Consider a system consisting of the...Ch. 5 - A sample of gas is contained in a...Ch. 5 - Limestone stalactites and stalagmites are formed...Ch. 5 - Consider the systems shown in Figure 5.10. In one...Ch. 5 -
5.105 A house is designed to have passive solar...Ch. 5 -
5.108 A coffee-cup calorimeter of the type shown...Ch. 5 -
5.107
When a 0.235-9 sample of benzoic acid is...Ch. 5 -
5.108 Meals-ready-to-eat (MREs) are military...Ch. 5 - 5.109 Burning methane in oxygen can produce three...Ch. 5 - Prob. 110AECh. 5 -
5.111 From the following data for three...Ch. 5 - The hydrocarbons acetylene (C2H2) and benzene...Ch. 5 - Ammonia (NH3) boils at -33 °C; at this temperature...Ch. 5 -
5.114 Three common hydrocarbons that contain four...Ch. 5 -
5.115 A 201-lb man decides to add to his exercise...Ch. 5 -
5.116 TheSun supplies about 1.0 kilowatt of...Ch. 5 -
5.117 Itis estimated that the net amount of...Ch. 5 -
5.118 At 20 °C (approximately room temperature)...Ch. 5 - Suppose an Olympic diver who weighs 52.0 kg...Ch. 5 -
5.120 Consider the combustion of a single...Ch. 5 -
5.121 Consider the following unbalanced...Ch. 5 - Consider the following acid-neutralization...Ch. 5 -
5.123 Consider two solutions, the first being...Ch. 5 - The precipitation reaction between AgNO3(aq) and...Ch. 5 -
5.125 A sample of a hydrocarbon is combusted...Ch. 5 -
5.126 The methane molecule, CH4, has the geometry...Ch. 5 -
5.127 One of the best-selling light, or...
Knowledge Booster
Learn more about
Need a deep-dive on the concept behind this application? Look no further. Learn more about this topic, chemistry and related others by exploring similar questions and additional content below.Similar questions
- Use the data in Appendix G to calculate the standard entropy change for H2(g) + CuO(s) H2O() + Cu(s)arrow_forwardThere are millions of organic compounds known, and new ones are being discovered or made at a rate of morethan 100,000 compounds per year. Organic compoundsburn readily in air at high temperatures to form carbondioxide and water. Several classes of organic compoundsare listed, with a simple example of each. Write a balanced chemical equation for the combustion in O2ofeach of these compounds, and then use the data inAppendix J to show that each reaction is product-favoredat room temperature. From these results, it is reasonable to hypothesize thatallorganic compounds are thermodynamically unstable inan oxygen atmosphere (that is, their room-temperaturereaction with O2(g) to form CO2(g) and H2O() isproduct-favored). If this hypothesis is true, how canorganic compounds exist on Earth?arrow_forwardCoal is used as a fuel in some electric-generating plants. Coal is a complex material, but for simplicity we may consider it to be a form of carbon. The energy that can be derived from a fuel is sometimes compared with the enthalpy of the combustion reaction: C(s)+O2(g)CO2(g) Calculate the standard enthalpy change for this reaction at 25C. Actually, only a fraction of the heat from this reaction is available to produce electric energy. In electric generating plants, this reaction is used to generate heat for a steam engine, which turns the generator. Basically the steam engine is a type of heat engine in which steam enters the engine at high temperature (Th), work is done, and the steam then exits at a lower temperature (Tl). The maximum fraction, f, of heat available to produce useful energy depends on the difference between these temperatures (expressed in kelvins), f = (Th Tl)/Th. What is the maximum heat energy available for useful work from the combustion of 1.00 mol of C(s) to CO2(g)? (Assume the value of H calculated at 25C for the heat obtained in the generator.) It is possible to consider more efficient ways to obtain useful energy from a fuel. For example, methane can be burned in a fuel cell to generate electricity directly. The maximum useful energy obtained in these cases is the maximum work, which equals the free-energy change. Calculate the standard free-energy change for the combustion of 1.00 mol of C(s) to CO2(g). Compare this value with the maximum obtained with the heat engine described here.arrow_forward
- How is the sign of q, heat, defined? How does it relate to the total energy of the system?arrow_forwardWhen 7.11 g NH4NO3 is added to 100 mL water, the temperature of the calorimeter contents decreases from 22.1 C to 17.1 C. Assuming that the mixture has the same specific heat as water and a mass of 107 g, calculate the heat q. Is the dissolution of ammonium nitrate exothermic or endothermic?arrow_forwardFor the reaction NO(g)+NO2(g)N2O3(g) , use tabulated thermodynamic data to calculate H and S. Then use those values to answer the following questions. (a) Is this reaction spontaneous at 25°C? Explain your answer. (b) If the reaction is not spontaneous at 25°C, will it become spontaneous at higher temperatures or lower temperatures? (c) To show that your prediction is accurate, choose a temperature that corresponds to your prediction in part (b) and calculate G . (Assume that both enthalpy and entropy are independent of temperature.)arrow_forward
- The combustion of methane can be represented as follows: a. Use the information given above to determine the value of H for the combustion of methane to form CO2(g) and 2H2O(l). b. What is Hf for an element in its standard state? Why is this? Use the figure above to support your answer. c. How does H for the reaction CO2(g) + 2H2O (1) CH4(g) + O2(g) compare to that of the combustion of methane? Why is this?arrow_forwardWhen 1.000 g of ethylene glycol, C2H6O2, is burned at 25C and 1.00 atmosphere pressure, H2O(l) and CO2(g) are formed with the evolution of 19.18 kJ of heat. a Calculate the molar enthalpy of formation of ethylene glycol. (It will be necessary to use data from Appendix C.) b Gf of ethylene glycol is 322.5 kJ/mol. What is G for the combustion of 1 mol ethylene glycol? c What is S for the combustion of 1 mol ethylene glycol?arrow_forwardFor the reaction BaCO3(s) BaO(s) + CO2(g), rG = +219.7 kJ/mol-rxn. Using this value and other data available in Appendix L, calculate the value of fG for BaCO3(s).arrow_forward
- Which of the following processes will lead to a decrease in the internal energy of a system? (1) Energy is transferred as heat to the system; (2) energy is transferred as heat from the system; (3) energy is transferred as work done on the system; or (4) energy is transferred as work done by the system. (a) 1 and 3 (b) 2 and 4 (c) 1 and 4 (d) 2and3arrow_forward2. Which of the following is true for a spontaneous process but not for a nonspontaneous process? Energy in the universe is concentrated conserved dispersed not conservedarrow_forwardFor the reaction TiCl2(s) + Cl2(g) TiCl4(), rG = 272.8 kj/mol-txn. Using this value and other data available in Appendix L, calculate the value of fG for TiCl2(s).arrow_forward
arrow_back_ios
SEE MORE QUESTIONS
arrow_forward_ios
Recommended textbooks for you
- Chemistry: The Molecular ScienceChemistryISBN:9781285199047Author:John W. Moore, Conrad L. StanitskiPublisher:Cengage LearningChemistry for Engineering StudentsChemistryISBN:9781337398909Author:Lawrence S. Brown, Tom HolmePublisher:Cengage LearningChemistry: Principles and PracticeChemistryISBN:9780534420123Author:Daniel L. Reger, Scott R. Goode, David W. Ball, Edward MercerPublisher:Cengage Learning
- Chemistry & Chemical ReactivityChemistryISBN:9781337399074Author:John C. Kotz, Paul M. Treichel, John Townsend, David TreichelPublisher:Cengage LearningChemistry & Chemical ReactivityChemistryISBN:9781133949640Author:John C. Kotz, Paul M. Treichel, John Townsend, David TreichelPublisher:Cengage LearningPrinciples of Modern ChemistryChemistryISBN:9781305079113Author:David W. Oxtoby, H. Pat Gillis, Laurie J. ButlerPublisher:Cengage Learning
Chemistry: The Molecular Science
Chemistry
ISBN:9781285199047
Author:John W. Moore, Conrad L. Stanitski
Publisher:Cengage Learning
Chemistry for Engineering Students
Chemistry
ISBN:9781337398909
Author:Lawrence S. Brown, Tom Holme
Publisher:Cengage Learning
Chemistry: Principles and Practice
Chemistry
ISBN:9780534420123
Author:Daniel L. Reger, Scott R. Goode, David W. Ball, Edward Mercer
Publisher:Cengage Learning
Chemistry & Chemical Reactivity
Chemistry
ISBN:9781337399074
Author:John C. Kotz, Paul M. Treichel, John Townsend, David Treichel
Publisher:Cengage Learning
Chemistry & Chemical Reactivity
Chemistry
ISBN:9781133949640
Author:John C. Kotz, Paul M. Treichel, John Townsend, David Treichel
Publisher:Cengage Learning
Principles of Modern Chemistry
Chemistry
ISBN:9781305079113
Author:David W. Oxtoby, H. Pat Gillis, Laurie J. Butler
Publisher:Cengage Learning
The Laws of Thermodynamics, Entropy, and Gibbs Free Energy; Author: Professor Dave Explains;https://www.youtube.com/watch?v=8N1BxHgsoOw;License: Standard YouTube License, CC-BY