Concept explainers
Peanuts and peanut oil are organic materials and bum in air. How many burning peanuts does it take to provide the energy to boil a cup of water (250 mL of water)? To solve this problem, we assume each peanut, with an average mass of 0.73 g, is 49% peanut oil and 21% starch; the remainder is noncombustible We further assume peanut oil is palmitic acid, C16H32O2, with an enthalpy of formation of −848.4 kJ/mol. Starch is a long chain of C6H10O5 units, each unit having an enthalpy of formation of −960 kJ.
Interpretation:
To identify how many burning peanuts are required to boil
Concept Introduction:
Heat energy required to raise the temperature of 1g of substance by 1K.Energy gained or lost can be calculated using the below equation.
Where, q= energy gained or lost for a given mass of substance (m), C =specific heat capacity,
The enthalpy of combustion can be calculated as
Answer to Problem 110SCQ
The number of peanuts required is
Explanation of Solution
Given
Given
Molecular weight of starch=
So we have
Enthalpy of combustion of palmitic acid.is calculated as,
Substitute in
Enthalpy of combustion of starch.is calculated as
Since we have
=
We have
Since we have
=
Mass of
Substitute in
Energy required to raise the temperature to
=
=
The total energy =
The total amount of energy released per peanut=
Therefore,
The number of peanuts are required to boil
Want to see more full solutions like this?
Chapter 5 Solutions
Chemistry & Chemical Reactivity
- The enthalpy change for the following reaction is 393.5 kJ. C(s,graphite)+O2(g)CO2(g) (a) Is energy released from or absorbed by the system in this reaction? (b) What quantities of reactants and products are assumed? (c) Predict the enthalpy change observed when 3.00 g carbon burns in an excess of oxygen.arrow_forwardWhen one mol of KOH is neutralized by sulfuric acid, q=56 kJ. (This is called the heat of neutralization.) At 23.7C, 25.0 mL of 0.475 M H2SO4 is neutralized by 0.613 M KOH in a coffee-cup calorimeter. Assume that the specific heat of all solutions is 4.18J/gC, that the density of all solutions is 1.00 g/mL, and that volumes are additive. (a) How many mL of KOH is required to neutralize H2SO4? (b) What is the final temperature of the solution?arrow_forwardIn a bomb calorimeter, the reaction vessel is surrounded by water that must be added for each experiment. Since the amount of water is not constant from experiment to experiment, the mass of water must be measured in each case. The heat capacity of the calorimeter is broken down into two parts: the water and the calorimeter components. If a calorimeter contains 1.00 kg water and has a total heat capacity of 10.84 kJ/C, what is the heat capacity of the calorimeter components?arrow_forward
- One step in the manufacturing of sulfuric acid is the conversion of SO2(g) to SO3(g). The thermochemical equation for this process is SO2(g)+12O2(g)SO3(g)H=98.9kJ The second step combines the SO3 with H2O to make H2SO4. (a) Calculate the enthalpy change that accompanies the reaction to make 1.00 kg SO3(g). (b) Is heat absorbed or released in this process?arrow_forwardWhen lightning strikes, the energy can force atmospheric nitrogen and oxygen to react to make NO: N2(g)+O2(g)2NO(g)H=+181.8kJ (a) Is this reaction endothermic or exothermic? (b) What quantities of reactants and products are assumed if H = +181.8 kJ? (c) What is the enthalpy change when 3.50 g nitrogen is reacted with excess O2(g)?arrow_forwardNiagara Falls has a height of 167 ft (American Falls). What is the potential energy in joules of 1.00 lb of water at the top of the falls if we take water at the bottom to have a potential energy of zero? What would be the speed of this water at the bottom of the falls if we neglect friction during the descent of the water?arrow_forward
- Chlorine dioxide, ClO2, is a reddish yellow gas used in bleaching paper pulp. The average speed of a ClO2 molecule at 25C is 306 m/s. What is the kinetic energy (in joules) of a ClO2 molecule moving at this speed?arrow_forwardAn industrial process for manufacturing sulfuric acid, H2SO4, uses hydrogen sulfide, H2S, from the purification of natural gas. In the first step of this process, the hydrogen sulfide is burned to obtain sulfur dioxide, SO2. 2H2S(g)+3O2(g)2H2O(l)+2SO2(g);H=1124kJ The density of sulfur dioxide at 25C and 1.00 atm is 2.62 g/L, and the molar heat capacity is 30.2 J/(mol C). (a) How much heat would be evolved in producing 1.00 L of SO2 at 25C and 1.00 atm? (b) Suppose heat from this reaction is used to heat 1.00 L of the SO2 from 25C to 500C for its use in the next step of the process. What percentage of the heat evolved is required for this?arrow_forwardHow much heat is produced by combustion of 125 g of methanol under standard state conditions?arrow_forward
- The decomposition of ozone, O3, to oxygen, O2, is an exothermic reaction. What is the sign of q? If you were to touch a flask in which ozone is decomposing to oxygen, would you expect the flask to feel warm or cool?arrow_forwardInsoluble PbBr2(s) precipitates when solutions of Pb(NO3)2(aq) and NaBr(aq) are mixed. Pb(NO3)2(aq) + 2 NaBr(aq) PbBr2(s) + 2 NaNO3(aq) rH = ? To measure the enthalpy change, 200. mL. of 0.75 M Pb(NO3)2(aq) and 200. mL of 1.5 M NaBr(aq) are mixed in a coffee-cup calorimeter. The temperature of the mixture rises by 2.44 C. Calculate the enthalpy change for the precipitation of PbBr2(s), in kJ/mol. (Assume the density of the solution is 1.0 g/mL., and its specific heat capacity is 4.2 J/g K.)arrow_forwardA 21.3-mL sample of 0.977 M NaOH is mixed with 29.5 mL of 0.918 M HCl in a coffee-cup calorimeter (see Section 6.6 of your text for a description of a coffee-cup calorimeter). The enthalpy of the reaction, written with the lowest whole-number coefficients, is 55.8 kJ. Both solutions are at 19.6C prior to mixing and reacting. What is the final temperature of the reaction mixture? When solving this problem, assume that no heat is lost from the calorimeter to the surroundings, the density of all solutions is 1.00 g/mL, the specific heat of all solutions is the same as that of water, and volumes are additive.arrow_forward
- Chemistry & Chemical ReactivityChemistryISBN:9781337399074Author:John C. Kotz, Paul M. Treichel, John Townsend, David TreichelPublisher:Cengage LearningChemistry & Chemical ReactivityChemistryISBN:9781133949640Author:John C. Kotz, Paul M. Treichel, John Townsend, David TreichelPublisher:Cengage LearningChemistry: Principles and PracticeChemistryISBN:9780534420123Author:Daniel L. Reger, Scott R. Goode, David W. Ball, Edward MercerPublisher:Cengage Learning
- General Chemistry - Standalone book (MindTap Cour...ChemistryISBN:9781305580343Author:Steven D. Gammon, Ebbing, Darrell Ebbing, Steven D., Darrell; Gammon, Darrell Ebbing; Steven D. Gammon, Darrell D.; Gammon, Ebbing; Steven D. Gammon; DarrellPublisher:Cengage LearningChemistryChemistryISBN:9781305957404Author:Steven S. Zumdahl, Susan A. Zumdahl, Donald J. DeCostePublisher:Cengage Learning