
Concept explainers
Use standard enthalpies of formation in Appendix L to calculate enthalpy changes for the following:
- (a) 1.0 g of white phosphorus burns, forming P4Ol0(s)
- (b) 0.20 mol of NO(g) decomposes to N2(g) and O2(g)
- (c) 2.40 g of NaCl(s) is formed from Na(s) and excess Cl2(g)
- (d) 250 g of iron is oxidized with oxygen to Fe2O3(s)
(a)

Interpretation:
The enthalpy change for the formation the following reaction has to be determined.
Concept Introduction:
If a reaction proceeds in two or more other reaction,
The change in enthalpy,
Answer to Problem 57PS
The enthalpy change for the formation is
Explanation of Solution
Given mass is
The enthalpy of formation is
The change in enthalpy,
So, the enthalpy change for the formation is
(b)

Interpretation:
The enthalpy change for the formation the following reaction has to be determined.
Concept Introduction:
If a reaction proceeds in two or more other reaction,
Answer to Problem 57PS
The enthalpy change for the formation is
Explanation of Solution
Given mass is
The enthalpy of formation is -
The change in enthalpy,
So, the change in enthalpy is
(c)

Interpretation:
The enthalpy change for the formation the following reaction has to be determined.
Concept Introduction:
If a reaction proceeds in two or more other reaction,
Answer to Problem 57PS
The change in enthalpy is
Explanation of Solution
Given mass is
The enthalpy of formation is
The change in enthalpy,
Energy change =
So, the change in enthalpy is
(d)

Interpretation:
The enthalpy change for the formation the following reaction has to be determined.
Concept Introduction:
If a reaction proceeds in two or more other reaction,
Answer to Problem 57PS
The change in enthalpy is
Explanation of Solution
Given mass is
The enthalpy of formation is
The change in enthalpy,
Energy change =
So, the change in enthalpy is
Want to see more full solutions like this?
Chapter 5 Solutions
Chemistry & Chemical Reactivity
- 2. Provide reagents/conditions to accomplish the following syntheses. More than one step is required in some cases. a. H3C Br .CH3 H3C NH2arrow_forwarda. OH H₂N-O -Ph H+ acyclic productarrow_forwardeks.com/aleksogi/x/sl.exe/1o_u-IgNslkr7j8P3jH-IQs_pBanHhvTCeeBZbufuBYTI0Hz7m7D3ZS17Hd6m-HIl6n52njJN-TXdQA2X9yID-1SWQJTgnjARg30 111 States of Matter Understanding conceptual components of the enthalpy of solution 0/5 Ge A small amount of acetonitrile (CH, CN) is dissolved in a large amount of water. Imagine separating this process into the four stages sketched below. (These sketches show only a portion of the substances, so you can see the density and distribution of atoms and molecules in them.) CH,CN H₂O B 88 C Use these sketches to answer the questions in the table below. The enthalpy of solution AH is negative soln when CH3CN dissolves in water. Use this information to list the stages in order of increasing enthalpy. Would heat be absorbed or released if the system moved from Stage C to D? What force would oppose or favor the system moving from Stage C to D? Check all that apply. 1 absorbed O released neither absorbed nor released. none O ionic bonding force covalent bonding force…arrow_forward
- In a system with an anodic overpotential, the variation of ŋ as a function of the current density: 1. at low fields is linear 2. at higher fields, it follows Tafel's law Find the range of current densities for which the overpotential has the same value as when calculated for cases 1 and 2 (maximum relative difference of 5% with respect to the behavior for higher fields). To which overpotential range does this correspond? Data: 10 = 1.5 mA cm², T = 300°C, ẞ = 0.64, R = 8.314 J K 1 mol¹ and F = 96485 C mol-1.arrow_forwardIndicate 10.6 with only one significant figure.arrow_forwardIf I have 10 data points for variables x and y, when I represent y versus x I obtain a line with the equation y = mx + b. Is the slope m equal to dy/dx?arrow_forward
- The data for the potential difference of a battery and its temperature are given in the table. Calculate the entropy change in J mol-1 K-1 (indicate the formulas used).Data: F = 96485 C mol-1arrow_forwardIn a cell, the change in entropy (AS) can be calculated from the slope of the E° vs 1/T graph. The slope is equal to -AS/R, where R is the gas constant. Is this correct?arrow_forwardUsing the Arrhenius equation, it is possible to establish the relationship between the rate constant (k) of a chemical reaction and the temperature (T), in Kelvin (K), the universal gas constant (R), the pre-exponential factor (A) and the activation energy (Ea). This equation is widely applied in studies of chemical kinetics, and is also widely used to determine the activation energy of reactions. In this context, the following graph shows the variation of the rate constant with the inverse of the absolute temperature, for a given chemical reaction that obeys the Arrhenius equation. Based on the analysis of this graph and the concepts acquired about the kinetics of chemical reactions, analyze the following statements: I. The activation energy (Ea) varies with the temperature of the system. II. The activation energy (Ea) varies with the concentration of the reactants. III. The rate constant (K) varies proportionally with temperature. IV. The value of the…arrow_forward
- General Chemistry - Standalone book (MindTap Cour...ChemistryISBN:9781305580343Author:Steven D. Gammon, Ebbing, Darrell Ebbing, Steven D., Darrell; Gammon, Darrell Ebbing; Steven D. Gammon, Darrell D.; Gammon, Ebbing; Steven D. Gammon; DarrellPublisher:Cengage LearningChemistry: The Molecular ScienceChemistryISBN:9781285199047Author:John W. Moore, Conrad L. StanitskiPublisher:Cengage LearningChemistry: Principles and PracticeChemistryISBN:9780534420123Author:Daniel L. Reger, Scott R. Goode, David W. Ball, Edward MercerPublisher:Cengage Learning
- Chemistry by OpenStax (2015-05-04)ChemistryISBN:9781938168390Author:Klaus Theopold, Richard H Langley, Paul Flowers, William R. Robinson, Mark BlaserPublisher:OpenStaxChemistry: Matter and ChangeChemistryISBN:9780078746376Author:Dinah Zike, Laurel Dingrando, Nicholas Hainen, Cheryl WistromPublisher:Glencoe/McGraw-Hill School Pub CoChemistry: Principles and ReactionsChemistryISBN:9781305079373Author:William L. Masterton, Cecile N. HurleyPublisher:Cengage Learning




