Elements Of Modern Algebra
8th Edition
ISBN: 9781285463230
Author: Gilbert, Linda, Jimmie
Publisher: Cengage Learning,
expand_more
expand_more
format_list_bulleted
Question
Chapter 4.6, Problem 2TFE
To determine
Whether the statement, “The kernel of any homomorphism from group
Expert Solution & Answer
Want to see the full answer?
Check out a sample textbook solutionStudents have asked these similar questions
(20 p) 1. Find a particular solution satisfying the given initial conditions for the third-order
homogeneous linear equation given below. (See Section 5.2 in your textbook if you need a
review of the subject.)
y(3)+2y"-y-2y = 0; y(0) = 1, y'(0) = 2, y"(0) = 0;
y₁ = e*, y2 = e¯x, y3 = e−2x
(20 p) 2. Find a particular solution satisfying the given initial conditions for the second-order
nonhomogeneous linear equation given below. (See Section 5.2 in your textbook if you need
a review of the subject.)
y"-2y-3y = 6; y(0) = 3, y'(0) = 11
yc = c₁ex + c2e³x; yp = −2
(60 p) 3. Find the general, and if possible, particular solutions of the linear systems of
differential equations given below using the eigenvalue-eigenvector method. (See Section
7.3 in your textbook if you need a review of the subject.)
=
a) x 4x1 + x2, x2 = 6x1-x2
b) x=6x17x2, x2 = x1-2x2
c) x = 9x1+5x2, x2 = −6x1-2x2; x1(0) = 1, x2(0)=0
4. In a study of how students give directions, forty volunteers were given the task ofexplaining to another person how to reach a destination. Researchers measured thefollowing five aspects of the subjects’ direction-giving behavior:• whether a map was available or if directions were given from memory without a map,• the gender of the direction-giver,• the distances given as part of the directions,• the number of times directions such as “north” or “left” were used,• the frequency of errors in directions.a) Identify each of the variables in this study, and whether each is quantitative orqualitative. For each quantitative variable, state whether it is discrete or continuousb) Was this an observational study or an experimental study? Explain your answer
Find the perimeter and area
Chapter 4 Solutions
Elements Of Modern Algebra
Ch. 4.1 - True or False
Label each of the following...Ch. 4.1 - True or False
Label each of the following...Ch. 4.1 - True or False
Label each of the following...Ch. 4.1 - True or False Label each of the following...Ch. 4.1 - True or False
Label each of the following...Ch. 4.1 - True or False
Label each of the following...Ch. 4.1 - True or False Label each of the following...Ch. 4.1 - True or False
Label each of the following...Ch. 4.1 - True or False
Label each of the following...Ch. 4.1 - True or False
Label each of the following...
Ch. 4.1 - True or False
Label each of the following...Ch. 4.1 - True or False
Label each of the following...Ch. 4.1 - Exercises
1. Express each permutation as a product...Ch. 4.1 - Exercises
2. Express each permutation as a product...Ch. 4.1 - Exercises
3. In each part of Exercise , decide...Ch. 4.1 - In each part of Exercise 2, decide whether the...Ch. 4.1 - Find the order of each permutation in Exercise 1....Ch. 4.1 - Exercises
6. Find the order of each permutation in...Ch. 4.1 - Exercises
7. Express each permutation in Exercise ...Ch. 4.1 - Express each permutation in Exercise 2 as a...Ch. 4.1 - Compute f2, f3, and f1 for each of the following...Ch. 4.1 - Let f=(1,2,3)(4,5). Compute each of the following...Ch. 4.1 - Exercises Let f=(1,6)(2,3,5,4). Compute each of...Ch. 4.1 - Exercises
12. Compute , the conjugate of by , for...Ch. 4.1 - Exercises
13. For the given permutations, and ,...Ch. 4.1 - Exercises
14. Write the permutation as a product...Ch. 4.1 - Exercises
15. Write the permutation as a product...Ch. 4.1 - Exercises List all the elements of the alternating...Ch. 4.1 - Exercises List all the elements of S4, written in...Ch. 4.1 - Exercises
18. Find all the distinct cyclic...Ch. 4.1 - Exercises
19. Find cyclic subgroups of that have...Ch. 4.1 - Exercises Construct a multiplication table for the...Ch. 4.1 - Exercises
21. Find all the distinct cyclic...Ch. 4.1 - Exercises Find an isomorphism from the octic group...Ch. 4.1 - Prob. 23ECh. 4.1 - Exercises In Section 3.3, the centralizer of an...Ch. 4.1 - Prob. 25ECh. 4.1 - Prob. 26ECh. 4.1 - Prob. 27ECh. 4.1 - Prob. 28ECh. 4.1 - Prob. 29ECh. 4.1 - Exercises Let be the mapping from Sn to the...Ch. 4.1 - Exercises Let f and g be disjoint cycles in Sn....Ch. 4.1 - Exercises Prove that the order of An is n!2.Ch. 4.1 - Exercises
33. Prove Theorem : Let be a...Ch. 4.2 - True or False
Label the following statements as...Ch. 4.2 - In Exercises 1- 9, let G be the given group. Write...Ch. 4.2 - In Exercises 1- 9, let be the given group. Write...Ch. 4.2 - In Exercises 1- 9, let be the given group. Write...Ch. 4.2 - In Exercises 1- 9, let G be the given group. Write...Ch. 4.2 - In Exercises 1- 9, let G be the given group. Write...Ch. 4.2 - In Exercises 1- 9, let be the given group. Write...Ch. 4.2 - In Exercises 1- 9, let G be the given group. Write...Ch. 4.2 - In Exercises 1- 9, let G be the given group. Write...Ch. 4.2 - In Exercises 1- 9, let be the given group. Write...Ch. 4.2 - 10. For each in the group, define a mapping by ...Ch. 4.2 - 11. For each in the group, define a mapping by ...Ch. 4.2 - Find the right regular representation of G as...Ch. 4.2 - For each a in the group G define a mapping ma:GG...Ch. 4.3 - Prob. 1TFECh. 4.3 - Prob. 2TFECh. 4.3 - Prob. 3TFECh. 4.3 - Prob. 4TFECh. 4.3 - True or False
Label each of the following...Ch. 4.3 - Prob. 6TFECh. 4.3 - The alternating group A4 on 4 elements is the same...Ch. 4.3 - Prob. 1ECh. 4.3 - Prob. 2ECh. 4.3 - Prob. 3ECh. 4.3 - Prob. 4ECh. 4.3 - Prob. 5ECh. 4.3 - Prob. 6ECh. 4.3 - Prob. 7ECh. 4.3 - Prob. 8ECh. 4.3 - Prob. 9ECh. 4.3 - Prob. 10ECh. 4.3 - Prob. 11ECh. 4.3 - Prob. 12ECh. 4.3 - Prob. 13ECh. 4.3 - Prob. 14ECh. 4.3 - Prob. 15ECh. 4.3 - Prob. 16ECh. 4.3 - Prob. 17ECh. 4.3 - Prob. 18ECh. 4.3 - Prob. 19ECh. 4.3 - Prob. 20ECh. 4.3 - Prob. 21ECh. 4.3 - Prob. 22ECh. 4.3 - Construct a multiplication table for the group G...Ch. 4.3 - Prob. 24ECh. 4.3 - Construct a multiplication table for the group D5...Ch. 4.3 - List the elements of the group of rigid motions...Ch. 4.3 - Let G be the group of rigid motions of a cube....Ch. 4.3 - Let G be the group of rigid motions of a regular...Ch. 4.3 - Prob. 29ECh. 4.4 - True or False Label each of the following...Ch. 4.4 - True or False
Label each of the following...Ch. 4.4 - True or False Label each of the following...Ch. 4.4 - True or False
Label each of the following...Ch. 4.4 - True or False Label each of the following...Ch. 4.4 - True or False
Label each of the following...Ch. 4.4 - True or False Label each of the following...Ch. 4.4 - True or False
Label each of the following...Ch. 4.4 - 1. Consider , the groups of units in under...Ch. 4.4 - For each of the following subgroups H of the...Ch. 4.4 - In Exercises 3 and 4, let G be the octic group...Ch. 4.4 - In Exercises 3 and 4, let be the octic group in...Ch. 4.4 - Let H be the subgroup (1),(1,2) of S3. Find the...Ch. 4.4 - Let be the subgroup of .
Find the distinct left...Ch. 4.4 - In Exercises 7 and 8, let be the multiplicative...Ch. 4.4 - Prob. 8ECh. 4.4 - Let be a subgroup of a group with . Prove that ...Ch. 4.4 - Let be a subgroup of a group with . Prove that ...Ch. 4.4 - Let be a group of order 24. If is a subgroup of...Ch. 4.4 - Let H and K be subgroups of a group G and K a...Ch. 4.4 - Let H be a subgroup of the group G. Prove that if...Ch. 4.4 - Let H be a subgroup of a group G. Prove that gHg1...Ch. 4.4 - Prob. 15ECh. 4.4 - Let H be a subgroup of the group G. Prove that the...Ch. 4.4 - Show that a group of order 4 either is cyclic or...Ch. 4.4 - Let G be a group of finite order n. Prove that...Ch. 4.4 - Find the order of each of the following elements...Ch. 4.4 - Find all subgroups of the octic group D4.Ch. 4.4 - Prob. 21ECh. 4.4 - Lagranges Theorem states that the order of a...Ch. 4.4 - Find all subgroups of the quaternion group.Ch. 4.4 - Find two groups of order 6 that are not...Ch. 4.4 - If H and K are arbitrary subgroups of G, prove...Ch. 4.4 - Let p be prime and G the multiplicative group of...Ch. 4.4 - Prove that any group with prime order is cyclic.Ch. 4.4 - Let G be a group of order pq, where p and q are...Ch. 4.4 - Let be a group of order , where and are...Ch. 4.4 - Let G be an abelian group of order 2n, where n is...Ch. 4.4 - A subgroup H of the group Sn is called transitive...Ch. 4.4 - (See Exercise 31.) Suppose G is a group that is...Ch. 4.5 - True or False Label each of the following...Ch. 4.5 - Prob. 2TFECh. 4.5 - True or False
Label each of the following...Ch. 4.5 - True or False Label each of the following...Ch. 4.5 - True or False Label each of the following...Ch. 4.5 - True or False
Label each of the following...Ch. 4.5 - Prob. 7TFECh. 4.5 - Let G be the group and H the subgroup given in...Ch. 4.5 - 2. Show that is a normal subgroup of the...Ch. 4.5 - Prove or disprove that H={ [ 1a01 ]|a } is a...Ch. 4.5 - 4. Prove that the special linear group is a normal...Ch. 4.5 - 5. For any subgroup of the group , let denote the...Ch. 4.5 - Let H be a normal cyclic subgroup of a finite...Ch. 4.5 - Let H be a torsion subgroup of an abelian group G....Ch. 4.5 - Show that every subgroup of an abelian group is...Ch. 4.5 - 9. Consider the octic group of Example 3.
Find...Ch. 4.5 - 10. Find all normal subgroups of the octic...Ch. 4.5 - 11. Find all normal subgroups of the alternating...Ch. 4.5 - 12. Find all normal subgroups of the quaternion...Ch. 4.5 - Exercise 8 states that every subgroup of an...Ch. 4.5 - 14. Find groups and such that and the following...Ch. 4.5 - Find groups H and K such that the following...Ch. 4.5 - 16. Let be a subgroup of and assume that every...Ch. 4.5 - Prob. 17ECh. 4.5 - 18. If is a subgroup of , and is a normal...Ch. 4.5 -
19. With and as in Exercise 18, prove that is...Ch. 4.5 - Prob. 20ECh. 4.5 - With H and K as in Exercise 18, prove that K is a...Ch. 4.5 - 22. If and are both normal subgroups of , prove...Ch. 4.5 - 23. Prove that if and are normal subgroups of such...Ch. 4.5 - 24. The center of a group is defined as
...Ch. 4.5 - Prob. 25ECh. 4.5 - Prob. 26ECh. 4.5 - 27. Suppose is a normal subgroup of order of a...Ch. 4.5 - 28. For an arbitrary subgroup of the group , the...Ch. 4.5 - Find the normalizer of the subgroup (1),(1,3)(2,4)...Ch. 4.5 - Prob. 30ECh. 4.5 - Prob. 31ECh. 4.5 - Prob. 32ECh. 4.5 - Prob. 33ECh. 4.5 - Prob. 34ECh. 4.5 - Show that An has index 2 in Sn, and thereby...Ch. 4.5 - Prob. 36ECh. 4.5 - Prob. 37ECh. 4.5 - Let n be appositive integer, n1. Prove by...Ch. 4.5 - Prob. 39ECh. 4.5 - 40. Find the commutator subgroup of each of the...Ch. 4.6 - True or False Label each of the following...Ch. 4.6 - Prob. 2TFECh. 4.6 - True or False
Label each of the following...Ch. 4.6 - True or False
Label each of the following...Ch. 4.6 - True or False
Label each of the following...Ch. 4.6 - In Exercises , is a normal subgroup of the group...Ch. 4.6 - In Exercises , is a normal subgroup of the group...Ch. 4.6 - In Exercises , is a normal subgroup of the group...Ch. 4.6 - Prob. 4ECh. 4.6 - Prob. 5ECh. 4.6 - In Exercises , is a normal subgroup of the group...Ch. 4.6 - Let G be the multiplicative group of units U20...Ch. 4.6 - Suppose G1 and G2 are groups with normal subgroups...Ch. 4.6 - 9. Find all homomorphic images of the octic...Ch. 4.6 - 10. Find all homomorphic images of.
Ch. 4.6 - Find all homomorphic images of the quaternion...Ch. 4.6 - 12. Find all homomorphic images of each group in...Ch. 4.6 - Prob. 13ECh. 4.6 - Let G=I2,R,R2,R3,H,D,V,T be the multiplicative...Ch. 4.6 - 15. Repeat Exercise with, the multiplicative group...Ch. 4.6 - Prob. 16ECh. 4.6 - Prob. 17ECh. 4.6 - 18. If is a subgroup of the group such that for...Ch. 4.6 - Prob. 19ECh. 4.6 - Prob. 20ECh. 4.6 - Prob. 21ECh. 4.6 - Prob. 22ECh. 4.6 - Prob. 23ECh. 4.6 - 24. Let be a cyclic group. Prove that for every...Ch. 4.6 -
25. Prove or disprove that if a group has cyclic...Ch. 4.6 -
26. Prove or disprove that if a group has an...Ch. 4.6 -
27. a. Show that a cyclic group of order has a...Ch. 4.6 - Assume that is an epimorphism from the group G to...Ch. 4.6 -
29. Suppose is an epimorphism from the group to...Ch. 4.6 - Let G be a group with center Z(G)=C. Prove that if...Ch. 4.6 - 31. (See Exercise 30.) Prove that if and are...Ch. 4.6 - 32. Let be a fixed element of the group ....Ch. 4.6 - Prob. 33ECh. 4.6 - Prob. 34ECh. 4.6 - Prob. 35ECh. 4.6 - Prob. 36ECh. 4.6 - Let H and K be arbitrary groups and let HK denotes...Ch. 4.6 - Prob. 38ECh. 4.7 - True or False Label each of the following...Ch. 4.7 - Prob. 2TFECh. 4.7 - Let H1={ [ 0 ],[ 6 ] } and H2={ [ 0 ],[ 3 ],[ 6...Ch. 4.7 - Prob. 2ECh. 4.7 - Prob. 3ECh. 4.7 - Prob. 4ECh. 4.7 - Prob. 5ECh. 4.7 - Prob. 6ECh. 4.7 - Write 20 as the direct sum of two of its...Ch. 4.7 - Prob. 8ECh. 4.7 - 9. Suppose that and are subgroups of the abelian...Ch. 4.7 - 10. Suppose that and are subgroups of the...Ch. 4.7 - 11. Assume that are subgroups of the abelian...Ch. 4.7 - Prob. 12ECh. 4.7 -
13. Assume that are subgroups of the abelian...Ch. 4.7 - 14. Let be an abelian group of order where and are...Ch. 4.7 - Let H1 and H2 be cyclic subgroups of the abelian...Ch. 4.7 - Prob. 16ECh. 4.7 - Prob. 17ECh. 4.7 - Prob. 18ECh. 4.7 - 19. a. Show that is isomorphic to , where the...Ch. 4.7 - Suppose that G and G are abelian groups such that...Ch. 4.7 - Prob. 21ECh. 4.7 - Prob. 22ECh. 4.7 - Prove that if r and s are relatively prime...Ch. 4.7 - Prob. 24ECh. 4.8 - True or False Label each of the following...Ch. 4.8 - Prob. 2TFECh. 4.8 - Prob. 3TFECh. 4.8 - Prob. 4TFECh. 4.8 - Prob. 5TFECh. 4.8 - Prob. 6TFECh. 4.8 - Prob. 1ECh. 4.8 - Prob. 2ECh. 4.8 - a. Find all Sylow 3-subgroups of the alternating...Ch. 4.8 - Find all Sylow 3-subgroups of the symmetric group...Ch. 4.8 - Prob. 5ECh. 4.8 - 6. For each of the following values of , describe...Ch. 4.8 - Let G be a group and gG. Prove that if H is a...Ch. 4.8 - Prob. 8ECh. 4.8 - 9. Determine which of the Sylow p-groups in each...Ch. 4.8 - Prob. 10ECh. 4.8 - 11. Show that is a generating set for the...Ch. 4.8 - Prob. 12ECh. 4.8 - If p1,p2,...,pr are distinct primes, prove that...Ch. 4.8 - Suppose that the abelian group G can be written as...Ch. 4.8 - 15. Assume that can be written as the direct sum...Ch. 4.8 - Prob. 16ECh. 4.8 - Prob. 17ECh. 4.8 - Prob. 18E
Knowledge Booster
Learn more about
Need a deep-dive on the concept behind this application? Look no further. Learn more about this topic, algebra and related others by exploring similar questions and additional content below.Similar questions
- Assume {u1, U2, us} spans R³. Select the best statement. A. {U1, U2, us, u4} spans R³ unless u is the zero vector. B. {U1, U2, us, u4} always spans R³. C. {U1, U2, us, u4} spans R³ unless u is a scalar multiple of another vector in the set. D. We do not have sufficient information to determine if {u₁, u2, 43, 114} spans R³. OE. {U1, U2, 3, 4} never spans R³. F. none of the abovearrow_forwardAssume {u1, U2, 13, 14} spans R³. Select the best statement. A. {U1, U2, u3} never spans R³ since it is a proper subset of a spanning set. B. {U1, U2, u3} spans R³ unless one of the vectors is the zero vector. C. {u1, U2, us} spans R³ unless one of the vectors is a scalar multiple of another vector in the set. D. {U1, U2, us} always spans R³. E. {U1, U2, u3} may, but does not have to, span R³. F. none of the abovearrow_forwardLet H = span {u, v}. For each of the following sets of vectors determine whether H is a line or a plane. Select an Answer u = 3 1. -10 8-8 -2 ,v= 5 Select an Answer -2 u = 3 4 2. + 9 ,v= 6arrow_forward
- 3. Let M = (a) - (b) 2 −1 1 -1 2 7 4 -22 Find a basis for Col(M). Find a basis for Null(M).arrow_forwardSchoology X 1. IXL-Write a system of X Project Check #5 | Schx Thomas Edison essay, x Untitled presentation ixl.com/math/algebra-1/write-a-system-of-equations-given-a-graph d.net bookmarks Play Gimkit! - Enter... Imported Imported (1) Thomas Edison Inv... ◄›) What system of equations does the graph show? -8 -6 -4 -2 y 8 LO 6 4 2 -2 -4 -6 -8. 2 4 6 8 Write the equations in slope-intercept form. Simplify any fractions. y = y = = 00 S olo 20arrow_forwardEXERCICE 2: 6.5 points Le plan complexe est rapporté à un repère orthonormé (O, u, v ).Soit [0,[. 1/a. Résoudre dans l'équation (E₁): z2-2z+2 = 0. Ecrire les solutions sous forme exponentielle. I b. En déduire les solutions de l'équation (E2): z6-2 z³ + 2 = 0. 1-2 2/ Résoudre dans C l'équation (E): z² - 2z+1+e2i0 = 0. Ecrire les solutions sous forme exponentielle. 3/ On considère les points A, B et C d'affixes respectives: ZA = 1 + ie 10, zB = 1-ie 10 et zc = 2. a. Déterminer l'ensemble EA décrit par le point A lorsque e varie sur [0, 1. b. Calculer l'affixe du milieu K du segment [AB]. C. Déduire l'ensemble EB décrit par le point B lorsque varie sur [0,¹ [. d. Montrer que OACB est un parallelogramme. e. Donner une mesure de l'angle orienté (OA, OB) puis déterminer pour que OACB soit un carré.arrow_forward
- 2 Use grouping to factor: 10x + 13x + 3 = 0 Identify A B and C in the chart below feach responce inarrow_forward2 Use grouping to factor: 10x² + 13x + 3 = 0 Identify A, B, and C in the chart below. (each rearrow_forward2 Use grouping to factor: 10x + 13x + 3 = 0 Identify A B and C in the chart below feach responce inarrow_forward
arrow_back_ios
SEE MORE QUESTIONS
arrow_forward_ios
Recommended textbooks for you
- Elements Of Modern AlgebraAlgebraISBN:9781285463230Author:Gilbert, Linda, JimmiePublisher:Cengage Learning,
Elements Of Modern Algebra
Algebra
ISBN:9781285463230
Author:Gilbert, Linda, Jimmie
Publisher:Cengage Learning,
Orthogonality in Inner Product Spaces; Author: Study Force;https://www.youtube.com/watch?v=RzIx_rRo9m0;License: Standard YouTube License, CC-BY
Abstract Algebra: The definition of a Group; Author: Socratica;https://www.youtube.com/watch?v=QudbrUcVPxk;License: Standard Youtube License