In Exercises
The octic group
;
Want to see the full answer?
Check out a sample textbook solutionChapter 4 Solutions
Elements Of Modern Algebra
- Find the normalizer of the subgroup (1),(1,3)(2,4) of the octic group D4.arrow_forward9. Find all homomorphic images of the octic group.arrow_forwardFind the right regular representation of G as defined Exercise 11 for each of the following groups. a. G={ 1,i,1,i } from Example 1. b. The octic group D4={ e,,2,3,,,, }.arrow_forward
- 11. Find all normal subgroups of the alternating group .arrow_forwardLet H and K be subgroups of a group G and K a subgroup of H. If the order of G is 24 and the order of K is 3, what are all the possible orders of H?arrow_forwardIn Exercises 3 and 4, let G be the octic group D4=e,,2,3,,,, in Example 12 of section 4.1, with its multiplication table requested in Exercise 20 of the same section. Let H be the subgroup e, of the octic group D4. Find the distinct left cosets of H in D4, write out their elements, partition D4 into left cosets of H, and give [D4:H]. Find the distinct right cosets of H in D4, write out their elements, and partition D4 into right cosets of H. Example 12 Using the notational convention described in the preceding paragraph, we shall write out the dihedral group D4 of rigid motions of a square The elements of the group D4 are as follows: 1. the identity mapping e=(1) 2. the counterclockwise rotation =(1,2,3,4) through 900 about the center O 3. the counterclockwise rotation 2=(1,3)(2,4) through 1800 about the center O 4. the counterclockwise rotation 3=(1,4,3,2) through 2700 about the center O 5. the reflection =(1,4)(2,3) about the horizontal line h 6. the reflection =(2,4) about the diagonal d1 7. the reflection =(1,2)(3,4) about the vertical line v 8. the reflection =(1,3) about the diagonal d2. The dihedral group D4=e,,2,3,,,, of rigid motions of the square is also known as the octic group. The multiplication table for D4 is requested in Exercise 20 of this section.arrow_forward
- In Exercises 3 and 4, let be the octic group in Example 12 of section 4.1, with its multiplication table requested in Exercise 20 of the same section. Let be the subgroup of the octic group . Find the distinct left cosets of in , write out their elements, partition into left cosets of , and give . Find the distinct right cosets of in , write out their elements, and partition into right cosets of . Example 12 Using the notational convention described in the preceding paragraph, we shall write out the dihedral group of rigid motions of a square The elements of the group are as follows: 1. the identity mapping 2. the counterclockwise rotation through about the center 3. the counterclockwise rotation through about the center 4. the counterclockwise rotation through about the center 5. the reflection about the horizontal line 6. the reflection about the diagonal 7. the reflection about the vertical line 8. the reflection about the diagonal . The dihedral group of rigid motions of the square is also known as the octic group. The multiplication table for is requested in Exercise 20 of this section.arrow_forwardFind all subgroups of the octic group D4.arrow_forwardLet a,b,c, and d be elements of a group G. Find an expression for (abcd)1 in terms of a1,b1,c1, and d1.arrow_forward
- Let G be the group and H the subgroup given in each of the following exercises of Section 4.4. In each case, is H normal in G? Exercise 3 b. Exercise 4 c. Exercise 5 d. Exercise 6 e. Exercise 7 f. Exercise 8 Section 4.4 Let H be the subgroup e, of the octic group D4. Find the distinct left cosets of H in D4, write out their elements, partition D4 into left cosets of H, and give [D4:H]. Find the distinct right cosets of H in D4, write out their elements, and partition D4 into right cosets of H. Let H be the subgroup e, of the octic group D4. Find the distinct left cosets of H in D4, write out their elements, partition D4 into left cosets of H, and give [D4:H]. Find the distinct right cosets of H in D4, write out their elements, and partition D4 into right cosets of H. Let H be the subgroup e, of the octic group D4. Find the distinct left cosets of H in D4, write out their elements, partition D4 into left cosets of H, and give [D4:H]. Find the distinct right cosets of H in D4, write out their elements, and partition D4 into right cosets of H. Let H be the subgroup (1),(2,3) of S3. Find the distinct left cosets of H in S3, write out their elements, partition S3 into left cosets of H, and give [S3:H]. Find the distinct right cosets of H in S3, write out their elements, and partition S3 into right cosets of H. In Exercises 7 and 8, let G be the multiplicative group of permutation matrices I3,P3,P32,P1,P4,P2 in Example 6 of Section 3.5 Let H be the subgroup of G given by H=I3,P4={ (100010001),(001010100) }. Find the distinct left cosets of H in G, write out their elements, partition G into left cosets of H, and give [G:H]. Find the distinct right cosets of H in G, write out their elements, and partition G into right cosets of H. Let H be the subgroup of G given by H=I3,P3,P32={ (100010001),(010001100),(001100010) }. Find the distinct left cosets of H in G, write out their elements, partition G into left cosets of H, and give [G:H]. Find the distinct right cosets of H in G, write out their elements, and partition G into right cosets of H.arrow_forward18. If is a subgroup of the group such that for all left cosets and of in, prove that is normal in.arrow_forwardThe alternating group A4 on 4 elements is the same as the group D4 of symmetries for a square. That is. A4=D4.arrow_forward
- Elements Of Modern AlgebraAlgebraISBN:9781285463230Author:Gilbert, Linda, JimmiePublisher:Cengage Learning,