Concept explainers
25–28 ■ Law of Cooling These exercises use Newton’s Law of Cooling.
Cooling Soup A hot bowl of soup is served at a dinner party. It starts to cool according to Newton’s Law of Cooling, so its temperature at time t is given by
where t is measured in minutes and T is measured in
(a) What is the initial temperature of the soup?
(b) What is the temperature after 10 min?
(c) After how long will the temperature be
Want to see the full answer?
Check out a sample textbook solutionChapter 4 Solutions
Algebra and Trigonometry (MindTap Course List)
- Define Newton’s Law of Cooling. Then name at least three real-world situations where Newton’s Law of Cooling would be applied.arrow_forwardWaterWater flows into a tank, and a certain part of it drains out through a valve. The volume v in cubic feet of water in the tank at time t satisfies the equation dvdt=5(v/3). If the process continues for a long time, how much water will be in the tank?arrow_forwardVan der Waals Equation In Exercise 18 at the end of Section 2.3, we discussed the ideal gas law, which shows the relationship among volume V, pressure p, and temperature T for a fixed amount 1 mole of a gas. But chemists believe that in many situations, the van der Waals equation gives more accurate results. If we measure temperature T in kelvins, volume V in liters, and pressure p in atmosphere 1 atm is the pressure exerted by the atmosphere at sea level, then the relationship for carbon dioxide is given by p=0.082TV0.0433.592V2atm What volume does this equation predict for 1 mole of carbon dioxide at 500 kelvins and 100 atm?Suggestion: Consider volumes ranging from 0.1 to 1 liter.arrow_forward
- A bottle of soda with a temperature of 71 Fahrenheit was taken off a shelf and placed ina refrigerator with an internal temperature of 35 .After ten minutes, the internal temperature of thesoda was 63F . Use Newton’s Law of cooling towrite a formula that models this situation. To thenearest degree, what will the temperature of thesoda be after one hour?arrow_forwardThe Beer-Lambert Law As sunlight passes through the waters of lakes and oceans, the light is absorbed, and the deeper it penetrates, the more its intensity diminishes. The light intensity I at depth x is given by the Beer-Lambert Law: I=I0ekx where I0 is the light intensity at the surface and k is a constant that depends on the murkiness of the water see page 402. A biologist uses a photometer to investigate light penetration in a northern lake, obtaining the data in the table. Light intensity decreases exponentially with depth. Use a graphing calculator to find an exponential function of the form given by the Beer-Lambert Law to model these data. What is the light intensity I0 at the surface on this day, and what is the murkiness constant k for this lake? Hint: If your calculator gives you a function of the form I=abx, convert this to the form you want using the identities bx=eln(bx)=exlnb. See Example 1b. Make a scatter plot of the data, and graph the function that you found in part a on your scatter plot. If the light intensity drops below 0.15 lumen lm, a certain species of algae cant survive because photosynthesis is impossible. Use your model from part a to determine the depth below which there is insufficient light to support this algae. Depth ft Light intensity lm Depth ft Light intensity lm 5 10 15 20 13.0 7.6 4.5 2.7 25 30 35 40 1.8 1.1 0.5 0.3arrow_forward
- Algebra and Trigonometry (MindTap Course List)AlgebraISBN:9781305071742Author:James Stewart, Lothar Redlin, Saleem WatsonPublisher:Cengage LearningCollege AlgebraAlgebraISBN:9781305115545Author:James Stewart, Lothar Redlin, Saleem WatsonPublisher:Cengage LearningAlgebra & Trigonometry with Analytic GeometryAlgebraISBN:9781133382119Author:SwokowskiPublisher:Cengage
- Functions and Change: A Modeling Approach to Coll...AlgebraISBN:9781337111348Author:Bruce Crauder, Benny Evans, Alan NoellPublisher:Cengage LearningTrigonometry (MindTap Course List)TrigonometryISBN:9781337278461Author:Ron LarsonPublisher:Cengage Learning