The monthly high temperature for Atlantic City. New Jersey, peaks at an average high of 86 ° in July and goes down to an average high of 64 ° in January. Assume that this pattern for monthly high temperatures continues indefinitely and behaves like a cosine wave. a. Write a function of the form H t = A cos B t − C + D to model the average high temperature. The value H t is the average high temperature for month t , with January as t = 0. b. Graph the function from part (a) on the interval 0 , 13 and plot the points 0 , 64 , 6 , 86 and 12 , 64 to check the accuracy of your model.
The monthly high temperature for Atlantic City. New Jersey, peaks at an average high of 86 ° in July and goes down to an average high of 64 ° in January. Assume that this pattern for monthly high temperatures continues indefinitely and behaves like a cosine wave. a. Write a function of the form H t = A cos B t − C + D to model the average high temperature. The value H t is the average high temperature for month t , with January as t = 0. b. Graph the function from part (a) on the interval 0 , 13 and plot the points 0 , 64 , 6 , 86 and 12 , 64 to check the accuracy of your model.
Solution Summary: The author explains how the monthly high temperature continues indefinitely and behaves like a cosine wave. The amplitude of the curve is half the distance between the highest value and lowest value.
The monthly high temperature for Atlantic City. New Jersey, peaks at an average high of
86
°
in July and goes down to an average high of
64
°
in January. Assume that this pattern for monthly high temperatures continues indefinitely and behaves like a cosine wave.
a. Write a function of the form
H
t
=
A
cos
B
t
−
C
+
D
to model the average high temperature. The value
H
t
is the average high temperature for month
t
, with January as
t
=
0.
b. Graph the function from part (a) on the interval
0
,
13
and plot the points
0
,
64
,
6
,
86
and
12
,
64
to check the accuracy of your model.
Outside temperature over a day can be modeled as a sinusoidal function. Suppose you know the
temperature is 45 degrees at midnight and the high and low temperature during the day are 61 and
29 degrees, respectively. Assuming tis the number of hours since midnight, find an equation for the
temperature, D, in terms of t.
Construct a sinusoidal function with the provided information, and then solve the equation for the
requested values.
Outside temperatures over the course of a day can be modeled as a sinusoidal function. Suppose the
temperature varies between 51°F and 69°F during the day and the average daily temperature first
occurs at 10 AM. At what time does the temperature first reach 51°F after midnight?
The time the temperature first reaches 51°F is Number
AM.
Pls help ASAP and pls show all steps and calculations.
A Problem Solving Approach To Mathematics For Elementary School Teachers (13th Edition)
Knowledge Booster
Learn more about
Need a deep-dive on the concept behind this application? Look no further. Learn more about this topic, calculus and related others by exploring similar questions and additional content below.
Area Between The Curve Problem No 1 - Applications Of Definite Integration - Diploma Maths II; Author: Ekeeda;https://www.youtube.com/watch?v=q3ZU0GnGaxA;License: Standard YouTube License, CC-BY