The monthly high temperature for Atlantic City. New Jersey, peaks at an average high of 86 ° in July and goes down to an average high of 64 ° in January. Assume that this pattern for monthly high temperatures continues indefinitely and behaves like a cosine wave. a. Write a function of the form H t = A cos B t − C + D to model the average high temperature. The value H t is the average high temperature for month t , with January as t = 0. b. Graph the function from part (a) on the interval 0 , 13 and plot the points 0 , 64 , 6 , 86 and 12 , 64 to check the accuracy of your model.
The monthly high temperature for Atlantic City. New Jersey, peaks at an average high of 86 ° in July and goes down to an average high of 64 ° in January. Assume that this pattern for monthly high temperatures continues indefinitely and behaves like a cosine wave. a. Write a function of the form H t = A cos B t − C + D to model the average high temperature. The value H t is the average high temperature for month t , with January as t = 0. b. Graph the function from part (a) on the interval 0 , 13 and plot the points 0 , 64 , 6 , 86 and 12 , 64 to check the accuracy of your model.
Solution Summary: The author explains how the monthly high temperature continues indefinitely and behaves like a cosine wave. The amplitude of the curve is half the distance between the highest value and lowest value.
The monthly high temperature for Atlantic City. New Jersey, peaks at an average high of
86
°
in July and goes down to an average high of
64
°
in January. Assume that this pattern for monthly high temperatures continues indefinitely and behaves like a cosine wave.
a. Write a function of the form
H
t
=
A
cos
B
t
−
C
+
D
to model the average high temperature. The value
H
t
is the average high temperature for month
t
, with January as
t
=
0.
b. Graph the function from part (a) on the interval
0
,
13
and plot the points
0
,
64
,
6
,
86
and
12
,
64
to check the accuracy of your model.
Given lim x-4 f (x) = 1,limx-49 (x) = 10, and lim→-4 h (x) = -7 use the limit properties
to find lim→-4
1
[2h (x) — h(x) + 7 f(x)] :
-
h(x)+7f(x)
3
O DNE
17. Suppose we know that the graph below is the graph of a solution to dy/dt = f(t).
(a) How much of the slope field can
you sketch from this information?
[Hint: Note that the differential
equation depends only on t.]
(b) What can you say about the solu-
tion with y(0) = 2? (For example,
can you sketch the graph of this so-
lution?)
y(0) = 1
y
AN
(b) Find the (instantaneous) rate of change of y at x = 5.
In the previous part, we found the average rate of change for several intervals of decreasing size starting at x = 5. The instantaneous rate of
change of fat x = 5 is the limit of the average rate of change over the interval [x, x + h] as h approaches 0. This is given by the derivative in the
following limit.
lim
h→0
-
f(x + h) − f(x)
h
The first step to find this limit is to compute f(x + h). Recall that this means replacing the input variable x with the expression x + h in the rule
defining f.
f(x + h) = (x + h)² - 5(x+ h)
=
2xh+h2_
x² + 2xh + h² 5✔
-
5
)x - 5h
Step 4
-
The second step for finding the derivative of fat x is to find the difference f(x + h) − f(x).
-
f(x + h) f(x) =
= (x²
x² + 2xh + h² -
])-
=
2x
+ h² - 5h
])x-5h) - (x² - 5x)
=
]) (2x + h - 5)
Macbook Pro
A Problem Solving Approach To Mathematics For Elementary School Teachers (13th Edition)
Knowledge Booster
Learn more about
Need a deep-dive on the concept behind this application? Look no further. Learn more about this topic, calculus and related others by exploring similar questions and additional content below.
Area Between The Curve Problem No 1 - Applications Of Definite Integration - Diploma Maths II; Author: Ekeeda;https://www.youtube.com/watch?v=q3ZU0GnGaxA;License: Standard YouTube License, CC-BY