The monthly high temperature for Atlantic City. New Jersey, peaks at an average high of 86 ° in July and goes down to an average high of 64 ° in January. Assume that this pattern for monthly high temperatures continues indefinitely and behaves like a cosine wave. a. Write a function of the form H t = A cos B t − C + D to model the average high temperature. The value H t is the average high temperature for month t , with January as t = 0. b. Graph the function from part (a) on the interval 0 , 13 and plot the points 0 , 64 , 6 , 86 and 12 , 64 to check the accuracy of your model.
The monthly high temperature for Atlantic City. New Jersey, peaks at an average high of 86 ° in July and goes down to an average high of 64 ° in January. Assume that this pattern for monthly high temperatures continues indefinitely and behaves like a cosine wave. a. Write a function of the form H t = A cos B t − C + D to model the average high temperature. The value H t is the average high temperature for month t , with January as t = 0. b. Graph the function from part (a) on the interval 0 , 13 and plot the points 0 , 64 , 6 , 86 and 12 , 64 to check the accuracy of your model.
Solution Summary: The author explains how the monthly high temperature continues indefinitely and behaves like a cosine wave. The amplitude of the curve is half the distance between the highest value and lowest value.
The monthly high temperature for Atlantic City. New Jersey, peaks at an average high of
86
°
in July and goes down to an average high of
64
°
in January. Assume that this pattern for monthly high temperatures continues indefinitely and behaves like a cosine wave.
a. Write a function of the form
H
t
=
A
cos
B
t
−
C
+
D
to model the average high temperature. The value
H
t
is the average high temperature for month
t
, with January as
t
=
0.
b. Graph the function from part (a) on the interval
0
,
13
and plot the points
0
,
64
,
6
,
86
and
12
,
64
to check the accuracy of your model.
PLEASE SHOW ME THE RIGHT ANSWER/SOLUTION
SHOW ME ALL THE NEDDED STEP
13: If the perimeter of a square is shrinking at a rate of 8 inches per second, find the rate at which its area is changing when its area is 25 square inches.
DO NOT GIVE THE WRONG ANSWER
SHOW ME ALL THE NEEDED STEPS
11: A rectangle has a base that is growing at a rate of 3 inches per second and a height that is shrinking at a rate of one inch per second. When the base is 12 inches and the height is 5 inches, at what rate is the area of the rectangle changing?
please answer by showing all the dfalowing necessary step
DO NOT GIVE ME THE WRONG ANSWER
The sides of a cube of ice are melting at a rate of 1 inch per hour. When its volume is 64 cubic inches, at what rate is its volume changing?
A Problem Solving Approach To Mathematics For Elementary School Teachers (13th Edition)
Knowledge Booster
Learn more about
Need a deep-dive on the concept behind this application? Look no further. Learn more about this topic, calculus and related others by exploring similar questions and additional content below.
Area Between The Curve Problem No 1 - Applications Of Definite Integration - Diploma Maths II; Author: Ekeeda;https://www.youtube.com/watch?v=q3ZU0GnGaxA;License: Standard YouTube License, CC-BY